Queue management algorithms analysis for information interaction improvement by network encoding technique


DOI: 10.34759/trd-2020-110-14

Аuthors

Britvin N. V.1*, Meshavkin K. V.2**

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Kaspersky Lab, 39A -3, Leningradskoe shosse, Moscow, 125212, Russia

*e-mail: britvin.nickita@yandex.ru
**e-mail: meshavkin1996@gmail.com

Abstract

Rapid development of mobile devices and increase in their production leads to a transport collapse in telecommunication networks. The form factor reducing of such devices sets a new trend in their production, aimed at wireless access to the global network. Due to this fact, a problem with the frequency range is already observed, which, in its turn negatively affects the information interaction [1, 2, 3].

Besides the above-described problem, the TCP/IP protocol stack, just like most standards and algorithms for transmission and generation of packets, was aimed at the wired segment, which, in turn, is free from some disadvantages of the wireless segment [4].

Most MANET devices employ the Tail drop queue management algorithm [11], in which packets are received until the queue is full and starts discarding them. If the buffer is constantly full, the network will be overloaded. Retransmission of the discarded packets requires additional resources (mobile device battery consumption and the channel throughput). In the case of multiple short TCP sessions on the network, congestion ensues, and the so-called “Global TCP synchronization” may occur. Based on points stated above, we can conclude that the Tail Drop uses the router memory irrationally.

The RED algorithm starts to discard packets when the queue starts filling up. When the queue size exceeds a certain maximum threshold, the probability of discarding a packet becomes equal to one. Thus, all incoming packets are discarded. The RED algorithm is effective enough for its selection in most queue-based devices, along with its modifications, such as WRED and CBWRED.

Keywords:

TCP/IP, AQM, network coded, Tail drop, Random early detection, Mobile ad hoc Network, queuing theory, network code, router congestion, network optimization

References

  1. Balakrishnan H., Seshan S., Katz R.H. Improving Reliable Transport and Handoff Performance in Cellular Wireless Networks, Wireless Networks, vol. 1, 1995, pp. 469 – 481.

  2. Borodin V.V., Petrakov A.M., Shevtsov V.A. Trudy MAI, 2015, no. 81, available at: http://trudymai.ru/eng/published.php?ID=57894

  3. Romanov A.M., Gringoli F., Sikora A. Trudy MAI, 2019, no. 108, available at: http://trudymai.ru/eng/published.php?ID=109522

  4. Sundararajan J.K., Shah D., Medard M. et al. Network Coding Meets TCP, Journal of INFOCOM, 2009, pp. 280 – 288.

  5. Seungwan R., Christopher R., Chunming Q. Advances in Active Queue Management (AQM) based TCP congestion control, Telecommunication Systems, 2004, vol. 25, no. 3 – 4, pp. 317 – 351.

  6. Karpukhin E.O., Meshavkin K.V. Vestnik komp’yuternykh i informatsionnykh tekhnologii, 2017, no. 12, pp. 39 – 46.

  7. Karpukhin E.O., Britvin N.V., Meshavkin K.V. Novye informatsionnye tekhnologii v avtomatizirovannykh sistemakh, 2017, no. 20, pp. 181 – 185.

  8. Karpukhin E.O., Britvin N.V. Elektrosvyaz’, 2017, no. 10, pp. 30 – 36.

  9. Corson S., Macker J. Mobile Ad hoc Networking (MANET), Routing Protocol Performance Issues and Evaluation Considerations (RFC 2501), 1999, available at: https://tools.ietf.org/html/rfc2501

  10. Volkov A.S., Muratchaev S.S., Kul’pina Yu.A. Trudy MAI, 2019, no. 109, available at: http://trudymai.ru/eng/published.php?ID=111387

  11. Aamir M., Mustafa A.Z. A Buffer Management Scheme for Packet Queues in MANET, Tsinghua Science and Technology, 2013, vol. 18, no. 6, pp. 543 – 553.

  12. Gong Y. The quest for low-latency at both network edges: design, analysis, simulation and experiments, Department of Network and Computer Science, Télécom ParisTech, 2016, available at: https://pastel.archives-ouvertes.fr/tel-01595947

  13. Ranjbar A.S. CCNP ONT Official Exam Certification Guide. Indianapolis, Cisco Press, 2007, available at: http://www.ciscopress.com/store/ccnp-ont-official-exam-certification-guide-9781587201769

  14. Panteleev A.V., Luneva S.Yu. Trudy MAI, 2019, no. 109, available at: http://trudymai.ru/eng/published.php?ID=111433

  15. Verzhbitskii V.M. Chislennye metody. Lineinaya algebra i nelineinye uravneniya (Numerical methods. Linear Algebra and Nonlinear Equations), Moscow, Izd-vo ONIKS 21 vek, 2005, 430 p.

  16. Britvin N.V. 18-ya mezhdunarodnaya konferentsiya «Aviatsiya i kosmonavtika-2019”, Moscow, Logotip, 2019, pp 116 – 117.

  17. John Erickson. Hacking. The Art of Explointation, Second edition, No Starch Press, 2008, 488 p.

  18. Madipelli S., Gillella D., Devaraya S. The RED Algorithm – Averaged Queue Weight Modeling for Non Linear Traffic // Blekinge Institute of Technology, 2009. URL: http://web.archive.org/web/20170329090005/https://www.diva-portal.org/smash/get/diva2:831714/FULLTEXT01.pdf

  19. Rastogi S., Zaheer H. Comparative analysis of queuing mechanisms: droptail, red and nlred, Social network analysis and mining, 2016, vol. 6, no. 1, available at: https://link.springer.com/article/10.1007%2Fs13278-016-0382-5

  20. Simonov A.S., Semenov A.S., Makagon D.V. Trudy MAI, 2019, no. 108, available at: http://trudymai.ru/eng/published.php?ID=109525


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход