Heat transfer in a rocket engine combustion chamber while geometry changing of the channel-slot solid fuel charge

DOI: 10.34759/trd-2020-111-5


Benderskyi B. Y.*, Chernova A. A.**

Kalashnikov Izhevsk State Technical University, 7, Studencheskaya str., Izhevsk, 426069, Russia

*e-mail: bib@istu.ru
**e-mail: alicaaa@gmail.com


Geometry changing impact of channel-slot charge while its burning on inner-chamber processes execution in flow ducts and pre-nozzle volume of the solid propellant rocket engine are being studied by mathematical modelling techniques. Setting of the conjugate problem of heat transfer in the flow ducts and pre-nozzle volume of the rocket engine combustion chamber with channel-slot solid fuel charge is presented. Numerical schemes and algorithms are being described. Mathematical modelling is being executed based on fundamental system of differential equations of viscous compressible heat-conducting gas movement. In spatial setting, solution of the problem under consideration is performed numerically using finite volumes method with account for the Rhie-Chow correction. The second-order of accuracy counter-flow scheme is employed for inviscid flows discretization, while the second-order of accuracy central scheme is applied for viscous flows. The system of difference equations is being solved by the algebraic net method, and a conjugate gradients method is applied herewith to accelerate its convergence. Various positions of burning dome are being considered while the engine operation at the static section. Profiles of longitudinal velocities components at the charge slice are being compared. The article analyses topological specifics of the combustion products flow, characteristic to various burning dome positions, and singular points are being characterized on the nozzle-cap assembly and near the charge grain-end. Thermal flow density near the structural elements of the combustion chamber is being studied. It was revealed that diameter increasing of the thermal flows channel led to maximum density decrease of thermal flows in the exceptional point and separation zones on the nozzle bottom by 2.04 and 3.6 times respectively. The article demonstrates that with the channel size increase, the decrease of velocity absolute values at the channel cut by 2.2 times is observed. As the result of the inner-channel processes analysis in the pre-nozzle volume of the solid propellant rocket engine, criteria equations for thermal flows evaluation near the exceptional points on the nozzle-cap assembly and the charge grain-end were obtained.


combustion chamber, channel-slot charge, nozzle bottom, mathematical modeling, heat transfer


  1. Alemasov V.E., Dregalin A.F., Tishin A.G. Teoriya raketnykh dvigatelei: uchebnik dlya studentov mashinostroitel’nykh spetsial’nostei vuzov (Theory of Rocket Engines: Text Book for machine building specialties of universities), Moscow, Mashinostroenie, 1980, 533 p.

  2. Fakhrutdinov I.Kh., Kotel’nikov A.V. Konstruktsiya i proektirovanie raketnykh dvigatelei tverdogo topliva (Structure and Development of Solid Fuel Rocket Engines), Moscow, Mashinostroenie, 1987, 328 p.

  3. Lipanov A.M., Bobryshev V.P., Aliev A.V., Spiridonov F.F., Lisitsa V.D. Chislennyi eksperiment v teorii RDTT (Numerical experiment in the solid propellant engines theory), Ekaterinburg, Nauka, 1994, 300 p.

  4. Orlov B.V., Mazin G.Yu. Termodinamicheskie i ballisticheskie osnovy proektirovaniya raketnykh dvigatelei na tverdom toplive (Thermodynamic and Ballistic Basics of Rocket Engines on Solid Fuel Designing), Moscow, Mashinostroenie, 1968, 536 p.

  5. Zhukauskas A.A. Konvektivnyi perenos v teploobmennikakh (Convective transfer in heat exchangers), Moscow, Nauka, 1982, 472 p.

  6. Koshkin V.K. Osnovy teploperedachi v aviatsionnoi i raketno-kosmicheskoi tekhnike (Fundamentals of heat transfer in aviation and space-rocket technology), Moscow, Mashinostroenie, 1975, 623 p.

  7. Lankaster O.E. Reaktivnye dvigateli (Jet engines), Moscow, Voenizdat, 1962, 668 p.

  8. Glebov G.A., Vysotskaya S.A. Vestnik Kontserna VKO «Almaz-Antei», 2016, no. 4, pp. 18 – 25.

  9. Glebov G.A., Vysotskaya S.A. Vestnik Kontserna VKO «Almaz-Antei», 2017, no. 1, pp. 8 – 16.

  10. Egorov M.Y. Numerical research of intra-chamber processes dynamics during startup of a special solid propellant engine, Russian Aeronautics, 2017, vol. 60, no. 4, pp. 591 – 599.

  11. Volkov K.N., Denisikhin S.V., Emel’yanov V.N. Khimicheskaya fizika i mezoskopiya, 2006, vol. 8, no. 3, pp. 327 – 335.

  12. Lipanov A.M., Dadikina S.Yu., Shumikhin A.A., Koroleva M.R., Karpov A.I. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Matematicheskoe modelirovanie i programmirovanie, 2019, vol. 12, no. 1, pp. 32 – 43.

  13. Volkov K.N., Emel’yanov V.N., Denisikhin S.V. Formation of Vortex Structures in the Prenozzle Space of an Engine with a Vectorable Thrust Nozzle, Journal of Engineering Physics and Thermophysics, 2016, vol. 89, no. 3, pp. 660 – 670.

  14. Dunaev V.A., Evlanov A.A. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2014, no. 12 (1), pp. 58 – 63.

  15. Molchanov A.M., Bykov L.V., Platonov I.M., Yanyshev D.S. Influence of geometric parameters and chemical kinetics model on combustion in a supersonic flow, Journal of Fluid Mechanics Research, 2017, vol. 44, no. 6, pp. 553 – 563. DOI: 10.1615/InterJFluidMechRes.2017020125

  16. Vinnik A.L., Dureev V.A. Sistemi obrobki informatsii, 2001, no. 2 (12), pp. 161 – 162.

  17. Isaev S., Popov I., Gritckevich M., Leontiev A. Abnormal enhancement of separated turbulent air flow and heat transfer in inclined single-row oval-trench dimples at the narrow channel wall, Acta Astronautica, 2019, vol. 163. DOI: 10.1016/j.actaastro.2019.01.033

  18. Volkov K.N., Denisikhin S.V., Emel’yanov V.N. Gas Dynamics of a Recessed Nozzle in Its Displacement in the Radial Direction, Journal of Engineering Physics and Thermophysics, 2017, vol. 90, no. 4, pp. 932 – 940. DOI: 10.1007/s10891-017-1640-8

  19. Benderskii B.Ya., Tenenev V.A. Experimental and numerical investigation of flows in complex shaped axisymmetric channels with mass injection, Fluid dynamics, 2001, vol. 36, no. 2, pp. 336 – 340. DOI: 10.1023/A:1019254622236

  20. Benderskiy B.Y., Chernova A.A. Formation of vortex structures in channels with mass injection and their interaction with surfaces in solid-fuel rocket engines, Thermophysics and aeromechanics, 2015, vol. 22, no. 2, pp. 185 – 190. DOI: 10.1134/S0869864315020055

  21. Volkov K.N., Emel’yanov V.N. Modelirovanie krupnykh vikhrei v raschetakh turbulentnykh techenii (Large vortices modelling in turbulent flows calculations), Moscow, Fizmatlit, 2008, 368 p.

  22. Savel’ev S.K., Emel’yanov V.N., Benderskii B.Ya. Eksperimental’nye metody issledovaniya gazodinamiki RDTT (Experimental methods of studying rocket solid propellant engines), Saint Petersburg, Nedra, 2007, 267 p.

  23. Benderskiy B.Y., Chernova A.A. Features of heat transfer in a pre-nozzle volume of a solid-propellant rocket motor with charges of complex shapes, Thermophysics and Aeromechanics, 2018, vol. 25, no.2, pp. 265 – 272. DOI: 10.1134/S0869864318020129

  24. Platonov I.M., Bykov L.V. Trudy MAI, 2016, no. 89, available at: http://trudymai.ru/eng/published.php?ID=72677

  25. Kraev V.M., Yanyshev D.S. Trudy MAI, 2010, no. 37, available at: http://trudymai.ru/eng/published.php?ID=13415

  26. Kravchuk M.O., Kudimov N.F., Safronov A.V. Trudy MAI, 2015, no. 82, available at: http://trudymai.ru/eng/published.php?ID=58536

  27. Vershkov V.A., Voronich I.V., Vyshinskii V.V. Trudy MAI, 2015, no. 82, available at: http://trudymai.ru/eng/published.php?ID=58628

  28. Menter F.R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model, Proc. 4th. Int. Symp. on Turbulence, Heat and Mass Transfer, Begell House, 2003, pp. 625 – 632.


mai.ru — informational site MAI

Copyright © 2000-2022 by MAI