Studying guidance and stabilization algorithms effectiveness of “Start-1” space-rocket complex control system


Аuthors

Aminova F. E.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: fatima.e.aminova@gmail.com

Abstract

The presented study deals with optimization of the testing process of management information system algorithms of complex objects on the example of guidance and stabilization algorithms of the management information system of the «Start» family light carrier rocket onboard complex.

The study practicality consists in application of the approaches for improving the testing processes for guidance algorithms of the space-rocket complex based on international standards not previously employed in the aerospace industry.

The purpose of the study is obtaining the expected end result of the study, assuming the stated contradiction solution by developing a testing model and recommendations for the test tests conducting.

The methodological basis of the study is the theory of systems, system and process analysis.

The following research techniques were employed while this work preparing:

– general scientific techniques such as analysis, synthesis, induction, deduction, analogy, ascent from abstract to concrete and vice versa;

– special techniques such as logical, comparative, and process analysis;

– modelling as well as experimental tecnhiques;

The following software was used as toolbox: BPwin, Erwin Process Modeler (CASE-tools for modeling processes based on the IDEF0 process description standards (functional model)), PTC Mathcad 15 (computer algebra system of a computer-aided design systems class), MATLAB (application software package for technical computing and modelling problems solving)

The study relevance and novelty lies in the fact that international testing standards that not previously implemented in the aerospace industry are being applied for the first time. To this end, analysis of international and Russian standards on software testing and the experimental development of a testing model based on guidance and stabilization algorithms were performed. The results of the study allowed conclude that recommendations on testing are relevant and confirms their practical significance.

Keywords:

guidance algorithms, stabilization algorithms, software testing, information systems, software quality assessment, Russian standards, international standards, State Standards, ISO, IEC

References

  1. Bruno G. Business process models and entity life cycles, International Journal of Information Systems and Project Management, 2019, vol. 7, no. 3, pp.65 - 77.

  2. Juhani Otra-Aho V., Iden J., Hallikas J. The Impact of the Project Management Office Roles to Organizational Value Contribution, International Journal of Information Technology Project Management, 2019, vol. 10, no 4, pp. 79 – 99.

  3. Hornstein H.A. The integration of project management and organizational change management is now a necessity, International Journal of Project Managemen, 2015, vol. 33, no. 2, pp.291 - 298. DOI: 10.1016/j.ijproman.2014.08.005

  4. Fernandes G., Ward S., Araújo M. Identifying useful project management practices: A mixed methodology approach, International Journal of Information Systems and Project Management, 2013, vol. 1, no. 4, pp. 5 - 21. DOI: 10.12821/ijispm010401

  5. Khodadadi E., Aghabeigi M. A Novel Hybrid MCDM Approach Based on Fuzzy DEMATEL, ANP, and Fuzzy VIKOR for Selecting the Best Project Managers, International Journal of Information Technology Project Management, 2018, vol. 9, no. 2, pp. 38 - 64. DOI: 10.4018/IJITPM.2018040103

  6. Damasiotis V., Fitsilis P., O'Kane J.F., Modeling Software Development Process Complexity, International Journal of Information Technology Project Management, 2018, vol. 9, no. 4, pp. 17 - 40.

  7. Hani S.U., Alam A.T. Software Development for Information System - Achieving Optimum Quality with Security, International Journal of Information System Modeling and Design, 2017, vol. 8, no. 4, pp. 1 - 20. DOI:10.4018/IJISMD.2017100101

  8. Nyarirangwe M., Babatunde O.K. Megaproject complexity attributes and competences: lessons from IT and construction projects, International Journal of Project Management, 2019, vol. 7, no. 4, pp. 77 - 99.

  9. Aminova F.E. VII Vserossiiskaya nauchno-prakticheskaya konferentsiya “Sovremennoe nepreryvnoe obrazovanie i innovatsionnoe, Serpukhov, MOU “IIF”, 2017, 1056 p.

  10. Zaitsev A.V. 15-aya Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Neirokomp'yutery i ikh primenenie” Moscow, FGBOU VO MGPPU, 2017, pp. 22, available at: http://www.permai.ru/files/16.04.2017.pdf

  11. Gerashchenko N.N. Trudy MAI, 2006, no. 23, available at: http://trudymai.ru/eng/published.php?ID=34089

  12. Vinogradov A.V., Borukaeva A.O., Berdikov P.G. Trudy MAI, 2019, no. 109, available at: http://trudymai.ru/eng/published.php?ID=111430. DOI: 10.34759/trd-2019-109-25

  13. Polyakov A.A., Zashchirinskii S.A. Trudy MAI, 2019, no. 107, available at: http://trudymai.ru/eng/published.php?ID=107877

  14. Badalov A.Yu., Razumov D.A. Trudy MAI, 2019, no. 100, available at: http://trudymai.ru/eng/published.php?ID=93491

  15. Aminova F.E. Nobelevskii kongress – 11 Mezhdunarodnaya vstrecha-konferentsiya laureatov Nobelevskikh premii i nobelistov, Tambov, Izd-vo Mezhdunarodnogo Informatsionnogo Nobelevskogo Tsentra “Nobelistika”, 2017, pp. 505 – 508.

  16. Aminova F.E. 17-ya Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Neirokomp'yutery i ikh primenenie” Moscow, MGPPU, 2019, pp. 113 – 114.

  17. Zaitsev A.V., Lupanchuk V.Yu., Aminova F.E. Informatsionnye sistemy i protsessy, Tambov, Izd-vo Mezhdunarodnogo Informatsionnogo Nobelevskogo Tsentra “Nobelistika”, 2018, pp. 28 – 37.

  18. Aminova F.E. XLIV Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya “Gagarinskie chteniya – 2018”, Moscow, Izd-vo MAI, 2018, vol. 2, pp. 194.

  19. Aminova F.E. XXXVI Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Problemy effektivnosti i bezopasnosti funktsionirovaniya slozhnykh tekhnicheskikh i informatsionnykh system”, Serpukhov, Izd-vo Voennoi akademii RVSN imeni Petra Velikogo, 2017, pp. 186 – 190.

  20. 829-1998 - IEEE Standard for Software Test Documentation, Montreal, available at: https://standards.ieee.org/standard/829-1998.html

  21. ISO/IEC JTC 1 25010:2011. Systems and software engineering. Systems and software Quality Requirement and Evaluation. System and software quality models, Montreal, available at: https://www.iso.org/standard/35733.html

  22. Informatsionnye tekhnologii. Otsenka programmnoi produktsii. Kharakteristiki kachestva i rukovodstva po ikh primeneniyu. GOST R ISO/MEK 9126-93 (Information technologies. Software product evaluation. Quality characteristics and guidelines for their use. GOST ISO/IEC 9126-93,), Moscow, Standartinform, 1994, 12 p.

  23. ISO/IEC JTC 1 9126-91. Software engineering. Product Quality, Montreal, available at: https://www.iso.org/standard/16722.html

  24. ISO/IEC 25022:2016. Systems and software engineering. Systems and software quality requirements and evaluation (SQuaRE). Measurement of quality in use, Montreal, available at: https://www.iso.org/ru/standard/35746.html

  25. ISO/IEC TR 9126-4:2004. Software engineering. Product quality. Part 4: Quality in use metrics, Montreal, available at: https://www.iso.org/ru/standard/39752.html

  26. ISO/IEC 25023:2016. Systems and software engineering. Systems and software Quality Requirements and Evaluation (SQuaRE). Measurement of system and software product quality, Montreal, available at: https://www.iso.org/standard/35747.html

  27. ISO/IEC JTC 1 TR 9126-2:2003. Software engineering. Product Quality. Part 2: External metrics, Montreal, available at: https://www.iso.org/standard/22750.html

  28. ISO/IEC JTC 1 TR 9126-3:2003. Software engineering. Product Quality. Part 2: Internal metrics. Montreal, available at: https://www.iso.org/standard/22891.html

  29. ISO/IEC JTC 1 25000:2014. Systems and software engineering. Systems and software Quality Requirement and Evaluation. Guide to SQuaRE, Montreal, available at: https://www.iso.org/standard/64764.html

  30. Informatsionnye tekhnologii. Sistemnaya i programmnaya inzheneriya. Trebovaniya i otsenka kachestva sistem i programmnogo obespecheniya. Elementy pokazatelya kachestva. GOST R ISO/MEK 25021-2014 (Information technologies. Systems and software engineering. Systems and software Quality Requirements and Evaluation (SQuaRE). Quality measure element. GOST R ISO/IEC 25021-2014), Moscow, Standartinform, 2015, 52 p.

  31. ISO/IEC JTC 1/SC 7 29119-3:2013. International Standard. Software and systems engineering. Software testing. Part 3: Test Documentation, Montreal, available at: https://standards.ieee.org/standard/29119-3-2013.html

  32. ISO/IEC JTC 1/SC 7 29119-1:2013. International Standard. Software and systems engineering. Software testing. Part 1: Concepts and definitions. Montreal, available at: https://www.iso.org/standard/45142.html

  33. Informatsionnye tekhnologii. Sistemnaya i programmnaya inzheneriya. Testirovanie programmnogo obespecheniya. Ponyatiya i opredeleniya. GOST R 56920-2016. (Information Technologies. Software and systems engineering. Software testing. Part 1. Concepts and definitions. GOST R 56920-2016), Moscow, Standartinform, 2015, 54 p.

  34. ISO/IEC JTC 1 12207:2008. Systems and software engineering. Software lifecycle processes, Montreal, available at: https://www.iso.org/ru/standard/43447.html

  35. Informatsionnye tekhnologii. Sistemnaya i programmnaya inzheneriya. Protsessy zhiznennogo tsikla programmnykh sredstv. GOST R ISO / MEK 12207-2010 (Information technologies. Software and systems engineering. Software life cycle processes. GOST R ISO/IEC 12207-2010), Moscow, Standartinform, 2006, 57 p.

  36. Zaitsev A.V., Kanushkin S.V., Volkov A.V., Toe V.T. Transportnoe delo Rossii, 2015, no. 5, pp. 158 – 161.

  37. Aminova F.E. 18-ya Mezhdunarodnaya konferentsiya “Aviatsiya i kosmonavtika – 2019”, Moscow, Logotip, 2019. pp. 79 – 80.


Download

mai.ru — informational site MAI

Copyright © 2000-2020 by MAI

Вход