Protsenko P. A.*, Skripnikov A. N.**

Military spaсe Akademy named after A.F. Mozhaisky, 13, Zdanovskaya str., Saint Petersburg, 197198, Russia

*e-mail: prosvka@gmail.com
**e-mail: salexeynik@gmail.com


One of the tasks that should be solved while the near-moon space development is the task of navigation and ballistic support, which includes the initial conditions clarifying for measuring satellites current navigation parameters.

The rational technology for current navigation parameters measuring seems to be sequential conducting of four to five sessions by one to four means, located evenly on the visible part of one turn of the spacecraft orbiting the Moon. As the result of the conducted current navigation parameters measuring, the achievable accuracy of the initial conditions of the lunar spacecraft is being estimated by measuring current navigation parameters by the selected technology.

In accordance with the technology for performing current navigation parameters measuring, a methodology for accuracy assessing of obtaining initial conditions of the spacecraft position by current navigation parameters measurements has been developed. The methodology is based on obtaining range and radial velocity measurements at the specified intervals of current navigation parameters measuring, and their processing by the least squares method to obtain estimates of the initial conditions of the spacecraft motion. To obtain errors sampling of the spacecraft position while current navigation parameters measurements processing Monte-Carlo method is used, which essence is reduced to multiple modelling of the measured information obtaining process with required mean square deviation values by range and radial velocity measurements at normal distribution law.

Based on the presented methodological approach, a modeling complex was developed that allows evaluate the achievable accuracy of the lunar spacecraft position computing for modern radio means.

The conducted study serves as a guide for predicting the accuracy characteristics of the initial conditions determining for the spacecraft motion in the Moon orbit. Measuring of the current navigation parameters of a spacecraft in the Moon orbit with radio-electronic means from the Earth surface allows estimating the spacecraft location with errors of the order of tens of meters in coordinates and tens of centimeters per second in speed. It is worth noting that the obtained errors of the spacecraft position do not include the errors associated with discrepancies of the mathematical model of motion, used in the least squares method, with the actual aircraft flight process around the Moon.


spacecraft, current navigation parameters measuring, lunar program, parameters determining accuracy


  1. Bogacheva M.N. Trudy MAI, 2010, no. 38, available at: http://trudymai.ru/eng/published.php?ID=14527&PAGEN_2=2

  2. Efanov V.V., Dolgopolov V.P. Vestnik NPO im. S.A. Lavochkina, 2016, no. 4 (34), pp 3 - 8.

  3. Borovikova E. V mire nauki, 2014, no. 9, pp. 10 - 11.

  4. Mitrofanov I.G., Zelenyi L.M. Zemlya i Vselennaya, 2019, no. 4 (328), pp. 16 - 37.

  5. Kuvshinova E.Yu. Trudy MAI, 2013, no. 68, available at: http://trudymai.ru/eng/published.php?ID=41742

  6. Vedeneeva N. Moskovskii komsomolets, 2018, no. 27857, available at: https://www.mk.ru/print/article/2115372/

  7. Bagrov A.V., Dmitriev A.O., Leonov V.A., Mit'kin A.S., Moskatin'ev I.V., Sysoev V.K., Shirshakov A.E. Trudy MAI, 2018, no. 99, available at: http://trudymai.ru/eng/published.php?ID=91814

  8. Averkiev N.F., Vas'kov S.A., Salov V.V. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie, 2008, vol. 51, no. 12, pp. 66 – 73.

  9. Averkiev N.F., Protsenko P.A., Salov V.V., Selin V.A. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskogo, 2010, no. 626, pp. 15 – 18.

  10. Molotova E.P., Tuchina A.G. Navigatsiya kosmicheskikh apparatov pri issledovanii dal'nego kosmosa (Spacecraft navigation in deep space exploration), Moscow, Radiotekhnika, 2016, 232 p.

  11. Mamon P.A., Salov V.V. Dinamika poleta k Lune (Dynamics of flight to the moon), Saint Petersburg, Voenno-kosmicheskaya akademiya imeni A.F.Mozhaiskogo, 2009, 137 p.

  12. Averkiev N.F., Vlasov S.A., Salov V.V., Kiselev V.V. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2016, no. 4, pp. 33 – 37.

  13. Salmin V.V., Starinova O.L., Volotsuev V.V., Petrukhina K.V., Tkachenko I.S., Gogolev M.Yu., Chetverikov A.S., Materova I.L. Trudy MAI, 2012, no. 60, available at: http://trudymai.ru/eng/published.php?ID=35080

  14. Vernigora L.V., Kazmerchuk P.V. Trudy MAI, 2019, no. 106, available at: http://trudymai.ru/eng/published.php?ID=105759

  15. Nastoyashchee i budushchee nazemnykh kompleksov upravleniya dal'nimi kosmicheskimi apparatami, available at: www.okbmei.ru/240118.html

  16. Masalkin A.A.0, Kolesnik A.V., Protsenko P.A. Trudy MAI, 2019, no. 106, available at: http://trudymai.ru/eng/published.php?ID=105700

  17. Vasil'eva A.V., Sedov D.P. Trudy MAI, 2018, no. 101, available at: http://trudymai.ru/eng/published.php?ID=96987

  18. Kolpin M.A., Protsenko P.A., Slashchev A.V. Trudy MAI, 2017, no. 92, available at: http://trudymai.ru/eng/published.php?ID=77144

  19. Averkiev N.F. Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie, 2001, vol. 44, no. 8, pp. 21.

  20. El'yasberg P.E. Opredelenie dvizheniya po rezul'tatam izmerenii (Motion detection based on measurement results), Moscow, Nauka, 1976, 416 p.

  21. Betanov V.V., Bairamov K.R. Yuzhno-Sibirskii nauchnyi vestnik, 2012, no. 2 (2), pp. 7 11.

  22. Lomako G.I. Opredelenie i analiz dvizheniya po eksperimental'nym dannym (Determination and analysis of motion based on experimental data), Saint Petersburg, MO SSSR, 1983, 263 p.


mai.ru — informational site MAI

Copyright © 2000-2020 by MAI