Resources managing algorithm for transport software-defined communication network


DOI: 10.34759/trd-2020-115-06

Аuthors

Baskakov A. E.1*, Volkov A. S.2**

1. National Research University of Electronic Technology, 1, sq. Shokina, Moscow, Zelenograd, 124498, Russia
2. National Research University of Electronic Technology, Bld. 1, Shokin Square, Zelenograd, Moscow, Russia, 124498

*e-mail: 79999924816@ya.ru
**e-mail: leshvol@mail.ru

Abstract

Transport SDNs represent the imposition of actively developing concept of network resources centralized management on transport reconfigurable packet networks, including optical ones. The main parameters and principles of the PCS herewith are not only preserved, but also extended to the lower levels, including the level of physical resources management.

The basic stage ensuring the possibility for developing solutions to manage the resources of the communication network, along with the network protocols realizing their operation, consists in developing

– Mathematical base of the communication network under study;

– Processes of resources allocation;

– computation of the necessary paths, including application of the existing developments in the field of standard telecommunications networks, software-defined networks, communication networks of unmanned aerial vehicles or self-organizing communication networks.

Following the principles of the SDN concept, the resources of the optical network from the viewpoint of the higher layer (IP) will be considered as a set of virtual transmission paths with a certain bandwidth, and all the detailed information on the structure will be available herewith only to the lower optical layer. Such approach will allow outlining the two subtasks within the framework of the resources managing task of a packet optical network: the optical network resources managing to create a virtual IP topology, and managing the pool of virtual channel resources at the IP level.

The requirement for dynamic and optimal control of transport resources of a packet optical network, defined by the PCN concept, presupposes a rigorous mathematical formalization and optimization statement of this problem. The attention is worth paying to the network models represented in the form of differential-difference equations of state. Such models are successfully employed for solving routing problems at the IP-network level, regarding it as the problem of channel and buffer resources allocation between incoming IP-packet flows.

With a view to the developing trend of energy saving, minimum of electric energy consumed by the network was selected as the optical networks resources control optimality criterion.

Electric energy consumed by the network directly relates to the number of devices involved in it, which in turn is also determined by the choice of the method of overlaying the packet network atop the optical one. Among all possible options, from the viewpoint of economy, attention should be paid to the «transparent» architecture of the IP-ower-WDM, in which establishing of light paths exclusively at the optical level is possible without transit routers engaging.

The of the upper control level task consists in resources distribution of the available virtual topology between the incoming IP-flows, which e initial data is routing variables: the known structures of the virtual topology of the IP-network, and the volumes of the transmitted traffic. Besides, it is necessary to form the requirements for the virtual topology of the IP-level, namely, for the number of light paths between pairs of routers and their bandwidth.

It is possible to avoid additional complication by applying as the initial data the packet flow rate from the i-th to the j-th router with the given requirements for the average IP packet length and bandwidth, rather than the transmitted traffic volumes estimation.

The presented algorithm allows describing the process of managing the resources of the transport PMS by an aggregate of computational procedures. All levels of management herewith are linked by a single target function, namely by the minimum of total energy consumption, and their solutions are coordinated with each other.

Keywords:

software defined network, transport network resource management, virtual network topology

References

  1. Borodin V.V., Petrakov A.M., Shevtsov V.A. Trudy MAI, 2015, no. 81. URL: http://trudymai.ru/eng/published.php?ID=57894

  2. Borodin V.V. Shevtsov V.A. Trudy MAI, 2012, no. 80. URL: http://trudymai.ru/eng/published.php?ID=56886

  3. Borodin V.V., Petrakov A.M., Shevtsov V.A. Trudy MAI, 2016, no. 87. URL: http://trudymai.ru/eng/published.php?ID=69735

  4. Dyshlenko S.G. Informatsionnye tekhnologii v nauke, obrazovanii i upravlenii, 2018, no. 1 (5), pp. 15 – 20.

  5. Thyagaturu A.S. et al. Software defined optical networks (SDONs): A comprehensive survey, IEEE Communications Surveys & Tutorials, 2016, vol. 18, no. 4, pp. 2738 – 2786. DOI: 10.1109/COMST.2016.2586999

  6. Baskakov A.E. et al. Development of a Mathematical Model of Software-defined Network Segment, 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), IEEE, 2020, pp. 1689 – 1693. DOI: 10.1109/EIConRus49466.2020.9039461

  7. De Souza F. R. et al. QoS-aware virtual infrastructures allocation on SDN-based clouds, 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2017, pp. 120 – 129. DOI Bookmark:10.1109/CCGRID.2017.57

  8. Oki E., Iwaki A. Load-balanced IP routing scheme based on shortest paths in hose model, IEEE Transactions on Communications, 2010, vol. 58, no. 7, pp. 2088 – 2096. DOI:10.1109/ICC.2009.5198976

  9. Shen G., Tucker R. S. Energy-minimized design for IP over WDM networks, Journal of Optical Communications and Networking, 2009, vol. 1, no. 1, pp. 176 – 186. DOI: 10.1364/JOCN.1.000176

  10. Papagiannaki K. et al. Measurement and analysis of single-hop delay on an IP backbone network, IEEE Journal on Selected Areas in Communications, 2003, vol. 21, no. 6, pp. 908 – 921.

  11. Montazerolghaem A., Yaghmaee M. H. Load-balanced and QoS-aware Software-defined Internet of Things, IEEE Internet of Things Journal, 2020. vol. 7, no. 4, pp. 3323 – 3337. DOI: 10.1109/JIOT.2020.2967081

  12. Thaenchaikun C. et al. Mitigate the load sharing of segment routing for SDN green traffic engineering, 2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), IEEE, 2016, pp. 1 – 6. DOI: 10.1109/ISPACS.2016.7824746

  13. Thazin N. QoS-based Traffic Engineering in Software Defined Networking, Unversity of Computer Studies, Yangon, 2019. URI: http://onlineresource.ucsy.edu.mm/handle/123456789/2477

  14. Ishii K. et al. Energy consumption and traffic scaling of dynamic optical path networks, Optical Metro Networks and Short-Haul Systems V. International Society for Optics and Photonics, 2013, vol. 8646. pp. 86460A. DOI: 10.1117/12.2003591

  15. Hohn N. et al. Bridging router performance and queuing theory, ACM SIGMETRICS Performance Evaluation Review, 2004, vol. 32, no. 1, pp. 355 – 366. DOI: 10.1145/1005686.1005728

  16. Vavenko T.V., Sterin V.L., Simonenko A.V. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2013, no. 4 (86), pp. 38 – 45.

  17. Moin S. et al. GREEN SDN–An enhanced paradigm of SDN: Review, taxonomy, and future directions, Concurrency and Computation: Practice and Experience, 2018, vol. 32, no. 21. URL: https://doi.org/10.1002/cpe.5086

  18. Rodrigues B.B. et al. GreenSDN: Bringing energy efficiency to an SDN emulation environment, IFIP/IEEE International Symposium on Integrated Network Management (IM), IEEE, 2015, pp. 948 – 953. DOI: 10.1109/INM.2015.7140416

  19. Satija S., Sharma T., Bhushan B. Innovative approach to Wireless Sensor Networks: SD-WSN, 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), IEEE, 2019, pp. 170 – 175. DOI: 10.1109/ICCCIS48478.2019.8974548

  20. Borodin V.V., Petrakov A.M., Shevtsov V.A. Trudy MAI, 2018, no. 100. URL: http://trudymai.ru/eng/published.php?ID=93398


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход