Space radiation impact on FPGA based digital units and irradiation stability hardening methods for such systems

Radio engineering, including TV systems and devices


Аuthors

Mullov K. D.

Scientific Research Institute of Precision Instruments, 51, Str., Dekabristov, Moscow, 127490, Russia

e-mail: kmullov@gmail.com

Abstract

Field Programmable Gate Arrays (FPGAs) are increasingly being used as a key component of digital systems due to their in-field reprogrammability, low non-recurring engineering costs, and relatively short design cycle. These characteristics, combined with high performance and high logic density, prove their feasibility for a number of ground and space level applications. Recently, a great interest aroused in using FPGAs onboard a spacecraft. FPGAs, like all semiconductor devices, are susceptible to radiation exposure. Radiation effects on electronic circuits used in extra-terrestrial applications and radiation prone environments need to be corrected. Since the variety of FPGA manufacturer’s offers, the radiation impact on them need to be studied and robust methods of fault tolerance need to be devised.

The main subject of study in this paper is the effects of cosmic ionizing radiation on FPGAs, and some fault-tolerant design strategies. The paper gives a classification of radiation effects and classification of the various methods of increasing radiation resistance of digital equipment. Operation principles of the presented method are also discussed in this paper. The main result of the work is analysis of the advantages and disadvantages of methods allowing increasing the radiation resistance of digital FPGA-based devices and recommendations for hardware developers on the use of these methods.

This paper summarizes the radiation effects on FPGAs, and methods to mitigate these effects. It also provides a case study of a successful FPGA system operating in space.

Keywords:

ionizing radiation, field programmable gate array (FPGA), digital signal processing, radiation resistance

References

  1. Polesskii S.N., Zhadnov V.V., Artyukhova M.A., Prokhorov V.F. Komponenty i tekhnologii, 2010, no.9. pp. 93-97.

  2. Ceschia M., Violante M. Identification and classification of single-event upsets in the configuration memory of SRAM-based FPGAs, IEEE Trans. Nucl. Sci., vol. 50, no. 6, pp. 2088-2094, Dec. 2003.

  3. Mironenko L., Yudintsev V., Elektronika, 2012, no. 8, pp. 74-87.

  4. Morelos-Saragosa R. Iskusstvo pomekhoustoichivogo kodirovaniya. Metody, algoritmy, primenenie (Art of error-correcting coding. Methods, algorithms, applications), Moscow, Tekhnosfera, 2006, 320 p.

  5. Barannikov L.N., Tkachev A.B., Khromtsev A.V, Trudy MAI, 2005. no. 18: http://www.mai.ru/science/trudy/published.php?ID=34194

  6. Timmaraju A.S., Anand D.A. Input-Output Logic based Fault-Tolerant Design Technique for SRAM-based FPGA’s, 2013, available at http://arxiv.org/abs/1311.0602

  7. Lima F., Carro L., Reis R. Single Event Upset Mitigation Techniques for SRAM-based FPGAs, Proceedings of the 4th IEEE Latin American Test Workshop, 2003.

  8. F.L. Kastensmidt, G. Neuberger, R.F. Hentschke, L. Carro, R. Reis, Designing Fault-Tolerant Techniques for SRAM-Based FPGAs, IEEE Design & Test of Computers, 2004, vol. 21, no. 6, pp. 552–562.


Download

mai.ru — informational site MAI

Copyright © 2000-2020 by MAI

Вход