Solar sail spatial position control

Dynamics, ballistics, movement control of flying vehicles


Аuthors

Makarenkova N. A.

,

e-mail: hope150392@mail.ru

Abstract

The solar sail, represented in the form of a thin rotating mirror film attached to a cylindrical rigid insertion, is considered. The flywheel is introduced to compensate the kinetic moment of the “rigid insertion—film” system. The author suggests to use albedo’s changes for creating the control moment. It will result in the structure elements’ kinetic moments vectors non-collinearity. As a result, the spacecraft will start rotating around the axis coinciding with the sum of these vectors. To study the advantages of the described control method, an assessment of the time and energy required for the solar sail reorientation in the case of a structure without compensating flywheel and with its presence is made. It is established, that the change in the angular velocity of the “rigid insert—film” system due to the tangential component of the light pressure force is 0.01% of the initial value. In view of this value’s smallness, a decision was taken to neglect it in the further investigation.

The shape of the film surface under the effect of the gyroscopic moment occurring while the sail surface albedo changing was established. The dependence of the film deviation from the plane of the rigid inserting from the angular velocity of the sail turn was obtained. The results of the conducted studies reveal that for a solar sail with a flywheel the turn time decreased by more than two times, and energy consumption decreased almost by factor of seven, compared to the solar sail structure without a flywheel.

Keywords:

solar sail, the control of a spacecraft, change of the reflectivity

References

  1. Polyakhova E.N. Kosmicheskii polet s solnechnym parusom: problemy i perspektivy (Space flight with the solar sail: problems and perspectives), Moscow, Knizhnyi dom “LIBROKOM”, 2011, 304 p.

  2. Johnson L.,Young R., Barnes N., Friedman L., Lappas V., McInnes C. Solar sails: technology and demonstration status. International journal of aeronautical and space sciences, 2012, no. 13(4), pp. 421-427.

  3. Komkov V.A., Mel’nikov V.M. Tsentrobezhnye beskarkasnye krupnogabaritnye kosmicheskie konstruktsii (Centrifugal frameless large-size space designs), Moscow, FIZMATLIT, 2009, 447 p.

  4. Stepan’yants G.A. Aviakosmicheskoe priborostroenie, 2002, no. 3, pp. 10-15.

  5. Cheremnykh E.A., Zykov A.V. Trudy MAI, 2011, no. 45, available at: http://www.mai.ru/science/trudy/published.php?ID=25397

  6. Sausvell R.V. Vvedenie v teoriyu uprugosti dlya inzhenerov i fizikov (Introduction to the theory of elasticity for engineers and physicists) Moscow, Inostrannaya literatura, 1948, 667 p.

  7. Makarenkova N.A. Trydy MAI, 2016, no. 85, available at: http://www.mai.ru/science/trudy/published.php?ID=65711

  8. Stepan’yants G.A. Vrashchenie vektornogo prostranstva i prosteishie zadachi upravleniya prostranstvennym razvorotom tverdogo tela (The rotation of a vector space and the simplest problems of controlling the spatial rotation of a rigid body), Moscow, MAI, 2007, 164 p.

  9. Targ S.M. Kratkii kurs teoreticheskoi mekhaniki (Short course of theoretical mechanics), Moscow, Vysshaya shkola, 1986, 416 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2019 by MAI

Вход