The development of kinetic models of the moving plasma. The Einstein coefficients for ion xenon.

Fluid, gas and plasma mechanics


Kuli-zade M. E.*, Reshetnikova O. F.**, Skorokhod E. P.***

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia



The study of the flows of a moving plasma, both experimental and theoretical, as well as the fundamental issues of plasmomechanics currently belong to the rapidly developing fields of science, which are used in solving the problems of engine building, rocket and space industry. In particular, the modeling of physicochemical processes is necessary for multilevel kinetics, low-temperature plasma spectroscopy, and optical diagnostics of plasma flows.

Einstein’s coefficients of spontaneous radiative transitions are the main terms of numerous kinetic equations, they are used to construct the state vectors of the plasma under investigation in the processing of spectra.

To compile the kinetic equations themselves, we need a scheme of levels and (what is fundamentally) their grouping, both for the XeI atom and for the XeII ion. The schemes compiled and supplemented in the quantum-defect approximation for the XeI atom and for the XeII ion make it possible to calculate the transitions that are absent in the reference edition [12].

In works from the list cited in [1, 2], on the study of the xenon plasma of the Hollow engine, little attention has been paid to the question: what levels and configurations should be taken into account in calculations. Usually in foreign publications, the averaged blocks are considered using the experimentally obtained constants, the kinetics for the atom, separately for the ion, is separately written. A joint model of the kinetics of excitations of an atom and an ion is not considered.

Calculations of the Einstein coefficients were carried out in the Coulomb approximation. The radial integrals were calculated using the Bates-Damgaard method. The angular dependences of the xenon ion are recorded in the LS – relationship. The values of the oscillator strengths and the probabilities of ~ 1000 radiative transitions of the xenon ion are given.

The averaging of the radiation constants is associated with the determination of the matrix element factor [11] (by adding the moments of dipole transitions). Recommendations are given on the use of tabular data of XeII in accordance with the chosen scheme of levels and configurations taken into account.


xenon plasma, modeling of radiative processes in kinetics, XeII ion oscillator strengths, Einstein coefficients of spontaneous radiative transitions of the XeII ion, photo-transition probabilities of the XeII ion, optical diagnostics


  1. Krivoruchko D.D., Skrylev A.V., Skorokhod E.P. Trudy MAI, 2017, no. 92, available at:

  2. Krivoruchko D.D., Kuli-zade M.E., Skorokhod E.P., Skrylev A.V. Trudy MAI, 2017, no. 94, available at:

  3. Kuli–zade M.E., Skorokhod E.P. Trudy MAI, 2017, no. 95, available at:

  4. Gavrilova A.Yu., Kiselev A.G., Skorokhod E.P. Teplofizika vysokikh temperatur, 2014, vol. 52, no. 2, pp. 174 – 185.

  5. Losev S.A., Sergievskaya A.L. Materialy VII Mezhdunarodnoi konferentsii po neravnovesnym protsessam v soplakh i struyakh, Alushta, 2008, pp. 286 – 288.

  6. Chernyi G.G., Losev S.A. Fiziko–khimicheskie protsessy v gazovoi dinamike (Physico–chemical processes in gas dynamics), Moscow, Izd-vo MGU, 1995, vol. 1, 343 p.

  7. Chernyi G.G., Losev S.A. Fiziko–khimicheskie protsessy v gazovoi dinamike (Physico–chemical processes in gas dynamics), Moscow, Izd-vo MGU, 1995, vol. 2, 368 p.

  8. Skorokhod E.P. Spektroskopicheskie metody issledovaniya fiziko–khimicheskikh i teplovykh protsessov v plazmennykh ustroistvakh (Spectroscopic methods of investigation of physico–chemical and thermal processes in plasma devices), Doctor’s thesis, Moscow, MAI, 2002, 41 p.

  9. Surzhikov S.T. Teplofizika vysokikh temperatur, 2016, vol. 54, no. 2, pp. 249 – 266.

  10. Wiese W. L., Smith M.W., Glennon B.M. Atomic Transition Probabilities, New York, Iov. Print. Opt, 1966, 153 p.

  11. Sobel’man I.I. Vvedenie v teoriyu atomnykh spektrov (Introduction to the theory of atomic spectra), Moscow, Nauka, 1977, 319 p.

  12. Striganov A.R., Sventitskii N.S. Tablitsy spektral’nykh linii neitral’nykh i ionizirovannykh atomov (Tables of spectral lines of neutral and ionized atoms), Moscow, Atomizdat, 1966, 899 p.

  13. Gavrilova A.Yu., Skorokhod E.P. Secheniya i konstanty skorostei plazmokhimichekskikh reaktsii inertnykh gazov (Section and rate constants of plasma chemical reactions of inert gases), Moscow, Izd-vo MAI, 2011, 192 p.

  14. Tharwat M. El-Sherbini. Transition probabilities and radiative lifetimes for singly ionized xenon Journal of Physics B: Atomic and Molecular Physics, 1976, vol. 9, no. 10, pp. 1665.

  15. Wiese W.L., Martin G.A. Wavelengths and Transition Probabilities for Atoms and Atomic Ions, Part II: Transition Probabilities, United States National Bureau of Standards NSRDS-NBS 68, 1980, 148 p.

  16. Michael W. Winter, Christoph Eichhorn, Monika Auweter-Kurtz and Thomas Pfrommer, Status on Plasma Diagnostic Measurements on a RIT-10 Ion Thruster IEPC-2007-173, 30th International Electric Propulsion Conference, Stuttgart, Germany, September 17-20, 2007. URL:

  17. Gigosos M., Mar S., Perez C., de la Rosa I. Experimental Stark widths and shifts and transition probabilities of several XeII lines, Physical Review, 1994, vol. E 49, no. 2, pp. 1575.

  18. Manzella D.H. Stationary Plasma Thruster Plume Emissions. Presented as IEPC 93-097, Proceeding of the 23rd International Electric Propulsion Conference. September 1993.

  19. Miller M.H., Roig R.A. Transition Probabilities of Xe I and Xe II, Physical Review A, 1973, vol. 8, pp. 480 – 486.

  20. Konjevic N., Lesage A., Fuhr J.R. and Wiese W.L. Experimental Stark Widths and Shifts for Spectral Lines of Neutral and Ionized Atoms (A Critical Review of Selected Data for the Period 1989 Through 2000), Journal of Physical and Chemical Reference, 2002, vol. 31, no. 3, available at:

  21. Di Rocco H.O., Iriarte D.I., Pomarico J.A. Lifetimes and transition probabilities of XeII: Experimental measurements and theoretical calculations, European Physical Journal D, 2000, vol.10 (1), pp. 19–26.

  22. Shakhatov V.A. Urovnevye poluempiricheskie stolknovitel’no-izluchatel’nye modeli v opticheskoi diagnostike neravnovesnykh gazovykh razryadov (Level semi-empirical collisional-radiative model in optical diagnostics of nonequilibrium gas discharges). Abstract of doctor’s thesis, Moscow, MGU, 2016, 50 p.

  23. Shibkova L.V. Fizicheskie protsessy v dvizhushcheisya plazme mnogokomponentnykh inertnykh i khimicheski aktivnykh smesei (Physical processes in a moving multicomponent plasma of inert and reactive mixtures). Abstract of doctor’s thesis, Moscow, Ob"edinennyi institut vysokikh temperatur RAN, 2007, 43 p.

  24. D’yachkov L.G. Razvitie kvaziklassicheskoi teorii radiatsionnykh svoistv nizkotemperaturnoi atomarnoi plazmy (Development of a semiclassical theory of radiative properties of low-temperature atomic plasmas). Abstract of doctor’s thesis, Moscow, Ob«edinennyi institut vysokikh temperatur RAN, 2001, 36 p.

  25. Gidaspov V.Yu. Trudy MAI, 2016, no. 91, available at:

  26. Prilozhenie k stat’e “Razrabotka kineticheskikh modelei dvizhushcheisya plazmy. Koeffitsienty Einshteina dlya iona ksenona”, available at:!books/articles/Prilozhenie k stat’e.pdf

Download — informational site MAI

Copyright © 2000-2022 by MAI