К вопросу применения аморфных устройств
DOI: 10.34759/trd-2022-122-01
Авторы
*, *, *Военно-космическая академия имени А.Ф. Можайского, Санкт-Петербург, Россия
*e-mail: vka@mil.ru
Аннотация
Рассмотрены вопросы, связанные с созданием и применением нового типа движителей для использования в робототехнических и транспортных устройствах. Показано, что применение движителей амебоидного типа имеет несомненные достоинства по сравнению с уже существующими аппаратами. Поставлены основные задачи, которые необходимо решить в процессе проектирования подобных движителей. Для построения математической модели движения выбрана расчетная схема, базирующаяся на выборе цилиндрической формы устройства, двигающегося по шероховатой наклонной плоскости. Представлены базовые дифференциальные уравнения для построения математической модели движения.
Ключевые слова:
движитель, робот, движение, условия, способ, модель, конструкцияБиблиографический список
-
Ардашов А.А. Силантьев С.Б., Софьин А.П., Федорова Л.А. Состояние и перспективы развития движителей космических роботов // Труды Военно-космической академии имени А.Ф.Можайского.2017. Вып. 656. С. 85-91.
-
Arthur T.Bradley. Locomotion of amorphous surface robots //Patent 8662213 USA, 04.03.2014.
-
Софьин А.П., Федорова Л.А. К вопросу применения аморфных типов космических роботов // Экология и развитие общества. 2019. № 1 (28). С. 57-60.URL: http://www.maneb.ru/node/297
-
Капустина О.М. Анализ нормальной реакции в задаче о качении без скольжения диска по неподвижной плоскости // Вестник Нижегородского университета им. Н.И.Лобачевского. 2011. №4-5. С. 2222–2223.
-
Виноградова О.А. Движение цилиндра по подвижной плоскости с трением // XI Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики (Казань, 20–24 августа 2015): сборник докладов. – Казань: Казанский (Приволжский) федеральный университет, 2015. С. 766-768.
-
Виноградова О.А. Движение цилиндра по подвижной плоскости с трением // Прикладная математика и механика. 2016. №80. С. 444-449.
-
Демидова Н.С. Сравнение трения при качении и трения при скольжении колеса в лекциях по механике // Автомобиль. Дорога. Инфраструктура. 2017. №4(14). С. 14.
-
Кулешов А.С., Трещев Д.В., Иванова Т.Б., Наймушина О.С. Твердый цилиндр на вязкоупругой плоскости // Нелинейная динамика. 2011. Т. 7. №3. С. 601-625.
-
Лагошная Е.А., Герасименко С.В., Бондаренко Л.Н. Влияние сопротивления качению цилиндра на качение без скольжения // Современные инновационные технологии подготовки инженерных кадров для горной промышленности и транспорта. 2018. №1(5). С. 127-135.
-
Бреки А.Д., Стариков Н.Е., Провоторов Д.А., Агеев Е.В., Гвоздев А.Е. О качении шара и цилиндра по криволинейной поверхности с вязкой прослойкой из жидкого смазочного композиционного материала // Известия Юго-Западного государственного университета. Серия: техника и технологии. 2015. № 4(17). С. 8-12.
-
Лойцянский Л.Г., Лурье А.И. Курс теоретической механики. Динамика. - М.: Наука, 1983. Т. II. - 640 с.
-
Нарыжный В.А. Динамика. - М.: НИЯУ МИФИ, 2012. - 168 с.
-
Бутенин Н.В., Лунц Я.Л., Меркин Д.Р. Теоретическая механика.– СПб.: Лань, 2008. - 736 с.
-
Арсеньев О.Н., Горшков Л.К. Теоретическая механика. - СПб.: ВКА имени А.Ф. Можайского, 2016. - 218 с.
-
Маркеев А.П. Динамика тела, соприкасающегося с твердой поверхностью. - М.: Наука. Гл. ред. физ.-мат. лит., 1992. - 336 с.
-
Сумбатов А.С., Юнин Е.К. Избранные задачи механики систем с сухим трением. - М.: Физматлит, 2013. - 194 с.
-
Панёв А.С. О движении твердого тела с подвижной внутренней массой по горизонтальной поверхности в вязкой среде // Труды МАИ. 2018. №98. URL: http://trudymai.ru/published.php?ID=90072
-
Бардин Б.С., Панёв А.С. О периодических движениях тела с подвижной внутренней массой по горизонтальной поверхности // Труды МАИ. 2015. №84. URL:http://trudymai.ru/published.php?ID=62995
-
Борисов А.В., Килин A.A., МамаевB.C.Как управлять шаром Чаплыгина при помощи роторов // Нелинейная динамика. 2012. №8. С. 289-307.
-
Борисов А.В., Мамаев И.С. Качение неоднородного шара по сфере без скольжения и верчения // Нелинейная динамика. 2006. Т. 2. С. 445-452.
-
Зобова А.А., Трещев Д.В. Шар на вязкоупругой плоскости // Труды математического института имени В.А.Стеклова. 2013. Т. 281. С. 98-126.
Скачать статью