Determining critical Reynolds number of laminar-turbulent transition in a flat Poiseuille problem based on “discontinuous functions” method


DOI: 10.34759/trd-2019-108-3

Аuthors

Khatuntseva O. N.

e-mail: olga.khatuntseva@rsce.ru

Abstract

The existing methods for determining critical Reynolds numbers of laminar-turbulent transition are related mainly to determining the loss of linear stability of laminar flow mode [1-3]. However, the attempts for resolving the best-known “classical” problems of the hydrodynamics are far from the success. Thus, the Hagen-Poiseuille problem and the flat Couette problem possess linear stability for any Reynolds numbers. There is a limitation on stability for laminar flow mode of the flat Poiseuille flow. However, the critical Reynolds number for stability loss computed by Orszag is 5772, which is exceeds experimental data almost six times.

The presented article continues the author’s circle of publication devoted to the solution of the hydro-dynamical problems, assuming an analytical approach existence for their consideration. The possibilities of “discontinuous functions” method application for theoretical estimation of the critical Reynolds number value of laminar-turbulent transition for the Hagen-Poiseuille problem and the flat Couette problem are studied in [17-18]. The method may be applied in the cases, when different functions specifying various physical processes exist, such as laminar and turbulent flow modes, as well as the jump-like transition from one physical process to another.

The author succeeded to analytically define functions, describing quasi-stationary turbulent and stationary laminar flow modes for the Hagen-Poiseuille problem and the flat Couette problem. These problems solutions were obtained at the cost of accounting for the entropy production in the Navier-Stokes equations, stipulated by stochastic pulsations excitation in the fluid flow. The similar approach to the velocity profiles determining both in laminar and turbulent flows applied in [19] for the flat Poiseuille problem solution. The presented work is devoted to the Reynolds number critical value determining by the “discontinuous functions” method in the for the flat Poiseuille problem. The critical value for Reynolds number at which laminar to turbulent flow mode transition was possible, was found. The article presents the results comparison with the available experimental data.

Keywords:

stochastic systems, probability density, turbulence, flat Poiseuille flow, critical Reynolds number

References

  1. Schlichting H. Boundary layer theory, New York, McGraw-Hill, 1955, 535 p.

  2. Drazin P.G. Introduction to hydrodynamic stability, Cambridge University Press, 2002, 258 р.

  3. Landau L.D., Lifshitz E.M. Course of Theoretical Physics, 2nd ed., Pergamon Press, 1987, vol. XIV, 539 p.

  4. Menter F.R. Zonal two equation k-w turbulence models for aerodynamic flows, 24th Fluid Dynamics Conference, AIAA Paper, July 6 – 9, 1993, Orlando, Florida, no. 93-2906, available at: https://cfd.spbstu.ru/agarbaruk/doc/1993_Menter_Zonal%20Two%20Equation%20k-w%20Turbulence%20Models%20for%20Aerodynamic%20Flows(2).pdf

  5. Shih T.-H., Liou W.W., Shabbir A., Yang Z., and Zhu J. A New k-e Eddy-Viscosity Model for High Reynolds Number Turbulent Flows – Model Developmentand Validation, Computers Fluids, 1995, vol. 24, no. 3, pp. 227 – 238.

  6. Launder B.E., Reece G.J., Rodi W. Progress in the Development of a Reynolds-Stress Turbulence Closure, Journal of Fluid Mechanics, April 1975, vol. 68, no. 3, pp. 537 – 566.

  7. Spalart P.R. Strategies for turbulence modeling and simulation, International Journal of Heat and Fluid Flow, 2000, vol. 21, no. 3, pp. 252 – 263.

  8. Launder B.E., Spalding D.B. Lectures in Mathematical Models of Turbulence, London, Academic Press, 1972, 169 p.

  9. Wilcox David C. Turbulence Modeling for CFD, Second edition, Anaheim: DCW Industries, 1998, pp. 174.

  10. Yakhot V., Orszag S.A., Thangam S., Gatski T.B., Speziale C.G. Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids, 1992, vol. 4, no. 7, pp. 510 – 520.

  11. Larina E.V., Kryukov I.A., Ivanov I.E. Trudy MAI, 2016, no. 91, available at: http://trudymai.ru/eng/published.php?ID=75565

  12. Kravchuk M.O., Kudimov N.F., Safronov A.V. Trudy MAI, 2015, no. 82, available at: http://trudymai.ru/eng/published.php?ID=58536

  13. Do S.Z. Trudy MAI, 2014, no. 75, available at: http://trudymai.ru/eng/published.php?ID=49670

  14. Dehaeze F., Barakos G.N., Batrakov A.S., Kusyumov A.N., Mikhailov S.A. Trudy MAI, 2012, no. 59, available at: http://trudymai.ru/eng/published.php?ID=34402

  15. Usachov A. E., Mazo A. B., Kalinin E. I., Isaev S. A., Baranov P. A., Semilet N. A. Trudy MAI, 2018, no. 99, available at: http://trudymai.ru/eng/published.php?ID=92088

  16. Nikushchenko D.V., Myalkin R.A. Morskie intellektual’nye tekhnologii, 2014, no. 2-4 (26), pp. 83 – 87.

  17. Khatuntseva O.N. Trudy MAI, 2018, no. 101, available at: http://trudymai.ru/eng/published.php?ID=96567

  18. Khatuntseva O.N. Trudy MAI, 2019, no. 104, available at: http://trudymai.ru/eng/published.php?ID=102091

  19. Khatuntseva O.N. Trudy MAI, 2019, no. 106, available at: http://trudymai.ru/eng/published.php?ID=105673

  20. Khatuntseva O.N. Trudy MAI, 2018, no. 100, available at: http://trudymai.ru/eng/published.php?ID=93311

  21. Khatuntseva O.N. Trudy MAI, 2018, no. 102, available at: http://trudymai.ru/eng/published.php?ID=98854

  22. Khatuntseva O.N. Estestvennye i tekhnicheskie nauki, 2017, no. 1, pp. 255 – 257.

  23. Khatuntseva O.N. Sibirskii zhurnal vychislitel’noi matematiki, 2009, vol. 12, no. 2, pp. 231 – 241.

  24. Dauchot O., Daviaud F. Finite-amplitude perturbation and spots growth mechanism in plane Couette flow, Physics of Fluids, 1995, no. 7, pp. 335 – 343.

  25. Bottin S., Daviaud F., Manneville P., Dauchot O. Discontinuous transition to spatiotemporal intermittency in plane Couette flow, Europhysics Letters, 1998, no. 43, pp. 171 – 176.

  26. Tuckerman Laurette S., Kreilos T, Schrobsdorff H., Schneider Tobias M., Gibson John F. Turbulent-laminar patterns in plane Poiseuille flow, Physics of Fluids, 2014, vol. 26, issue 11, available at: https://doi.org/10.1063/1.4900874

  27. Orszag Steven A., Kells Lawrence C. Transition to turbulence in plane Poiseuille and plane Couette flow, Journal of Fluid Mechanics, 1980, vol. 96, pp. 159 – 205.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход