Is the dynamic chaos a stochastic process in the autonomous systems of differential equations of the Lorenz system type


DOI: 10.34759/trd-2020-112-1

Аuthors

Khatuntseva O. N.

e-mail: olga.khatuntseva@rsce.ru

Abstract

At present, there are no stability criteria similar to Courant-Friedrichs-Lewy criteria for systems of autonomous differential equations (SADE). The instabilities, manifesting themselves as a computational chaos, occur while the numerical integration of SADE. Moreover, the time step decrease does not lead to this instability elimination. Commonly, the studies on determining the sensitivity of solutions to the initial conditions setting are being conducted to explain the deterministic chaos phenomenon. These studies demonstrate exponential divergence of initially close solution trajectories, and impossibility of selecting such small computational error to «conquer» the uncertainty in the Lorenz type SADE.

The conclusion is drawn from this circumstance that since the principal difficulties do not allow achieving the necessary accuracy, there is no need to muse about determinism. However, such approach does not resolve the problem of solutions determinism, irrespectively to the possibility or impossibility of obtaining of the information regarding the evolution of the considered system. The issues of predestination in the closed systems, in particular with such closed system as Universe, conjugate with these issues.

The studies conducted in the presented work demonstrate that the deterministic chaos occurring in SADE of Lorenz type may be associated with the stochastic process and is not, in essence, the deterministic chaos for any finite time step.

The article discusses the issues associated with the possibility of turbulence modelling based on the Navier-Stokes equations via direct numerical simulation technique.

The problems related with the feasibility for modeling of the turbulence on the basis of Navier-Stokes equations via the direct numerical simulations are also addressed in the paper.

Keywords:

chaos, autonomous differentiation equations, Lorenz system of equations, stochastic systems, turbulence

References

  1. Fletcher K. Vychislitel’nye metody v dinamike zhidkostei (Computational Techniques in Fluid Dynamics), Moscow. Mir, 1991, 504 p.

  2. Kotel’nikov M.V., Nguen Suan Tkhau. Trudy MAI, 2012, no. 50, available at: http://trudymai.ru/eng/published.php?ID=28798

  3. Berzhe P., Pomo I., Vidal’ K. Poryadok v khaose. O deterministkom podkhode k turbulentnosti (L’ordre dans le chaos: Vers une approche déterministe de la turbulence), Moscow, Mir, 1991, 368 p.

  4. Tucker W. A Rigorous ODE Solver and Smale’s 14th Problem, Foundations of Computational Mathematics, 2002, no. 2(1), pp. 53 – 117. DOI: 10.1007/s002080010018

  5. Magnitskii N.A., Sidorov S.V. Novye metody khaoticheskoi dinamiki (New methods of chaotic dynamics), Moscow, Editorial URSS, 2004, 320 p.

  6. Pchelintsev A.N. Sibirskii zhurnal vychislitel’noi matematiki, 2014, vol. 17, no. 2, pp. 191 – 201.

  7. Khatuntseva O.N. Estestvennye i tekhnicheskie nauki, 2017, no. 11, pp. 255 – 257.

  8. Khatuntseva O.N. Trudy MAI, 2018, no. 100, available at: http://trudymai.ru/eng/published.php?ID=93311

  9. Ien Styuart. Velichaishie matematicheskie zadachi (The outstanding mathematical problems), Moscow, Al’pina non-fikshn, 2016, 460 p.

  10. 10 The uttermost mathematical problems. Kuvshinova E.Yu. Trudy MAI, 2013, no 68, available at: http://trudymai.ru/eng/published.php?ID=41742

  11. Khatuntseva O.N. Sibirskii zhurnal vychislitel’noi matematiki, 2009, vol. 12, no. 2, pp. 231 – 241.

  12. Feder J. Fractals. New York, Plenum Press, 1988, 283 p.

  13. Shlikhting H. Boundary layer theory, London, Pergamon Press, 1955, 535 p.

  14. Spalart P.R. Strategies for turbulence modeling and simulation, International Journal of Heat and Fluid Flow, 2000, vol. 21, no. 3, pp. 252 – 263. DOI: 10.1016/S0142-727X(00)00007-2

  15. Dauchot O., Daviaud F. Finite-amplitude perturbation and spots growth mechanism in plane Couette flow, Physics of Fluids, 1995, no.7, pp. 335 – 343, available at: https://doi.org/10.1063/1.868631

  16. Bottin S., Daviaud F., Manneville P., Dauchot O. Discontinuous transition to spatiotemporal intermittency in plane Couette flow, Europhysics Letters, 1998, vol. 43, no. 2, pp. 171 – 176, available at: https://doi.org/10.1209/epl/i1998-00336-3

  17. Tuckerman Laurette S., Kreilos T, Schrobsdorff H., Schneider Tobias M., Gibson John F. Turbulent-laminar patterns in plane Poiseuille flow, Physics of Fluids, Jan 2015. DOI: 10.1063/1.4900874

  18. Orszag Steven A., Kells Lawrence C. Transition to turbulence in plane Poiseuille and plane Couette flow, Journal of Fluid Mechanics, 1980, vol. 96, no.1, pp. 159 – 205, available at: https://doi.org/10.1017/S0022112080002066

  19. Larina E.V., Kryukov I.A., Ivanov I.E. Trudy MAI, 2016, no. 91, available at: http://trudymai.ru/eng/published.php?ID=75565

  20. Dehaeze F., Barakos G.N., Batrakov A.S., Kusyumov A.N., Mikhailov S.A. Trudy MAI, 2012, no. 59, available at: http://trudymai.ru/eng/published.php?ID=34840

  21. Kravchuk M.O., Kudimov N.F., Safronov A.V. Trudy MAI, 2015, no. 82, available at: http://trudymai.ru/eng/published.php?ID=58536

  22. Do S.Z. Trudy MAI, 2014, no. 75, available at: http://trudymai.ru/eng/published.php?ID=49670

  23. Vu M.Kh., Popov S.A., Ryzhov Yu.A. Trudy MAI, 2012, no. 53, available at: http://trudymai.ru/eng/published.php?ID=29361

  24. Krupenin A.M., Martirosov M.I. Trudy MAI, 2013, no. 69, available at: http://trudymai.ru/eng/published.php?ID=43066

  25. Krupenin A.M., Martirosov M.I. Trudy MAI, 2014, no. 75, available at: http://trudymai.ru/eng/published.php?ID=49676

  26. Makhrov V.P., Glushchenko A.A., Yur’ev A.I. Trudy MAI, 2013, no. 64, available at: http://trudymai.ru/upload/iblock/1e7/rus.pdf?lang=ru&issue=64

  27. Menter F.R. Zonal two equation k-w turbulence models for aerodynamic flows, 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, AIAA Paper, 1993, N93-2906, pp. 21.

  28. Shih T.-H., Liou W.W., Shabbir A., Yang Z., and Zhu J. A New k-e Eddy-Viscosity Model for High Reynolds Number Turbulent Flows – Model Developmentand Validation, Computers Fluids, 1995, vol. 24, no. 3, pp. 227 – 238, available at: https://doi.org/10.1016/0045-7930(94)00032-T

  29. Launder B.E., Reece G.J., Rodi W. Progress in the Development of a Reynolds-Stress Turbulence Closure, Journal of Fluid Mechanics, April 1975, vol. 68, no. 3, p. 537 – 566. DOI: 10.1017/S0022112075001814

  30. Launder B.E., Spalding D.B. Lectures in Mathematical Models of Turbulence, London, Academic Press, 1972, 169 p.

  31. Wilcox David C. Turbulence Modeling for CFD. Second edition, Anaheim: DCW Industries, 1998, 174 p.

  32. Yakhot V., Orszag S.A., Thangam S., Gatski T.B., Speziale C.G. Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids, 1992, vol. 4, no. 7, pp. 510 – 520, available at: https://doi.org/10.1063/1.858424

  33. Nikushchenko D.V., Myalkin R.A. Morskie intellektual’nye tekhnologii, 2014, vol. 2, no. 4(26), pp. 83 – 87.

  34. Pavlovskii V.A., Khitrykh D.P., Malamanov S.Yu. Morskie intellektual’nye tekhnologii, 2018, vol. 1, no. 2(40), pp. 138 – 143.

  35. Nikitin N.V. Izvestiya RAN. Mekhanika zhidkosti i gaza, 1994, no. 6, pp. 14 – 26.

  36. Khatuntseva O.N. Trudy MAI, 2018, no. 102, available at: http://trudymai.ru/eng/published.php?ID=98854

  37. Khatuntseva O.N. Uchenye zapiski TsAGI, 2011, vol. XLII, no. 1, pp. 62 – 85.

  38. Khatuntseva O.N. Trudy MAI, 2019, no. 104, available at: http://trudymai.ru/eng/published.php?ID=102091

  39. Khatuntseva O.N. Trudy MAI, 2019, no. 106, available at: http://trudymai.ru/eng/published.php?ID=105673

  40. Khatuntseva O.N. Trudy MAI, 2019, no. 108, available at: http://trudymai.ru/eng/published.php?ID=109382

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход