Сравнительный анализ схем комплексирования информации бесплатформенных инерциальных навигационных систем беспилотных летательных аппаратов
DOI: 10.34759/trd-2021-117-11
Авторы
*, **Московский авиационный институт (национальный исследовательский университет), 125993, г. Москва, Волоколамское шоссе, д. 4
*e-mail: pavel-ermakov-1998@mail.ru
**e-mail: kirbizz8@yandex.ru
Аннотация
Серьезной проблемой современных беспилотных летательных аппаратов массой менее 500 кг является их низкая надежность ввиду существенных ограничений на массу информационно-управляющего комплекса, что в свою очередь ведет к применению микроэлектромеханических (МЭМС) датчиков, обладающих существенными уходами и дрейфами [1]. В данной статье приводится сравнительный анализ раздельной и слабосвязанной схем комплексирования на основе данных имитационного моделирования инерциально-измерительного модуля VN-100T и навигационных алгоритмов с целью повышения точности и надежности информационно-управляющего комплекса беспилотного летательного аппарата (БЛА).
Ключевые слова:
имитационное моделирование, беспилотный летательный аппарат, навигационная система, раздельная схема комплексирования, слабосвязанная схема комплексирования, фильтр КалманаБиблиографический список
-
Zakriya Mohammed, Ibrahim (Abe) M. Elfadel, Mahmoud Rasras. Monolithic Multi Degree of Freedom (MDoF) Capacitive MEMS Accelerometers // Micromachines, 16 November 2018, vol. 9, no. 11. DOI: 0.3390/mi9110602
-
Гоголев А.А., Горобинский М.А. Определение собственного положения микробеспилотного летательного аппарата в условиях замкнутого пространства // Труды МАИ. 2018. № 101. URL: http://trudymai.ru/published.php?ID=97029
-
Красильщиков М.Н., Серебряков Г.Г. Современные информационные технологии в задачах навигации и наведения беспилотных маневренных летательных аппаратов. – М.: ФИЗМАТЛИТ, 2009. – 556 с.
-
Савельев В.М., Антонов Д.А. Выставка бесплатформенной инерциальной навигационной системы беспилотного летательного аппарата на подвижном основании // Труды МАИ. 2011. № 45. URL: http://trudymai.ru/published.php?ID=25497&PAGEN_2=2
-
Колосовская Т.П. Субоптимальный алгоритм оценивания и параметрической идентификации для навигационных систем летательных аппаратов и других подвижных объектов на основе информации магнитного поля Земли // Труды МАИ. 2016. № 88. URL: http://trudymai.ru/published.php?ID=70666
-
Alex G Quinchia, Gianluca Falco, Emanuela Falletti, Fabio Dovis. A Comparison between different error modeling of MEMS applied to GPS / INS integrated systems // Sensors (Basel), 24 July 2013, vol. 13, no. 3, pp. 9549 – 9588. DOI:10.3390/s130809549
-
Calogero Cristodaro, Laura Ruotsalainen, Fabio Dovis. Benefits and Limitations of the Record and Replay Approach for GNSS Receiver Performance Assessment in Harsh Scenarios // Sensors, 7 July 2018, vol. 18, no. 7. DOI: 10.3390/s18072189
-
Liu Hong Dan, Shu Xiong Ying, Li Xi Sheng. Application Of Strongly Tracking Kalman Filter In MEMS Gyroscope Bias Compensation // 6th International Conference on Advanced Materials and Computer Science, ISAMCS 2017. DOI: 10.23977/icamcs.2017.1004
-
Accelerometer Errors, 9 July 2015. URL: http://kionixfs.kionix.com/en/document/AN012%20Accelerometer%20Errors.pdf
-
Vlada Sokolović, Goran Dikić, Rade Stančić. Adaptive Error Damping in the Vertical Channel of the Ins/Gps/Baro – Altimeter Integrated Navigation System // Scientific Technical Review, 2014, vol. 64, no. 2, pp. 14 – 20.
-
Alberto Manero Contreras, Chingiz Hajiyev. Fault Tolerant Integrated Barometric-Inertial GPS Altimeter // 7th European conferences for aeronautics and aerospace science (EUCASS), 2017. DOI: 10.13009 / EUCASS2017 – 62
-
Tang. Pham Van, Thang Nguyen Van, Duc Anh Nguyen, Trinh Chu Duc. 15 – State Extended Kalman Filter Design for INS / GPS Navigation System // Journal of Automation and Control Engineering, January 2015, vol. 3, no. 2, pp. 109 -114. DOI: 10.12720/joace.3.2.109-114
-
Beard & McLain. Small Unmanned Aircraft, Princeton University Press, 2012. URL: https://uavbook.byu.edu/doku.php
-
Yan Chen, Dan Li, Yanhai Li, Xiaoyuan Ma. Use Moving Average Filter to Reduce Noises in Wearable PPG During Continuous Monitoring // EAI International Conference on Wearables in Healthcare, Budapest, Hungary, vol. eHealth 2016, LNICST 181, pp. 193 – 203. DOI: 10.1007/978-3-319-49655-9_26
-
Mushfiqul Alam, Jan Rohac. Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth // Sensors, February 2015, vol. 15, no. 2, pp. 3282 - 3298. DOI: 10.3390/s150203282
-
Paola Pierleoni, Alberto Belli, Lorenzo Maurizi, Lorenzo Palma. A Wearable Fall Detector for Elderly People Based on AHRS and Barometric Sensor // Sensors, September 2016, vol. 16, no. 17, pp. 1 - 1. DOI: 10.1109/JSEN.2016.2585667
-
Wenjiao Xiao, Zgu, Yu. An Unconventional Multiple Low-Cost IMU and GPS-Integrated Kinematic Positioning and Navigation Method Based on Singer Model // Sensors, October 2019, vol. 19, no. 19. DOI: 10.3390/s19194274
-
Веремеенко К.К., Галай И.А. Разработка алгоритма калибровки инерциальной навигационной системы на двухосном испытательном стенде // Труды МАИ. 2013. № 63. URL: http://trudymai.ru/published.php?ID=36139
-
Кузнецов И.М., Пронькин А.Н., Веремеенко К.К. Навигационный комплекс аэропортового транспортного средства // Труды МАИ. 2011. № 47. URL: http://trudymai.ru/published.php?ID=26966
-
Vishal Awasthi, Krishna Raj. A Comparison of Kalman Filter and Extended Kalman Filter in State Estimation // International Journal of Electronics Engineering, 2011, vol. 3, no. 1, pp. 67 – 71.
-
Logah Perumal. Representing Rotation in Simulink using Quaternion // Applied Mathematics & Information Science, 1 April 2014, vol. 8, no. 1L, pp. 267 – 272. DOI: 10.12785/amis/081L34
-
VectorNav Embedded Navigation Solutions. VN – 100 User Manual. URL: https://www.eol.ucar.edu/system/files/VN100manual.pdf
Скачать статью