Сравнительный анализ схем комплексирования информации бесплатформенных инерциальных навигационных систем беспилотных летательных аппаратов


DOI: 10.34759/trd-2021-117-11

Авторы

Ермаков П. Г.*, Гоголев А. А.**

Московский авиационный институт (национальный исследовательский университет), 125993, г. Москва, Волоколамское шоссе, д. 4

*e-mail: pavel-ermakov-1998@mail.ru
**e-mail: kirbizz8@yandex.ru

Аннотация

Серьезной проблемой современных беспилотных летательных аппаратов массой менее 500 кг является их низкая надежность ввиду существенных ограничений на массу информационно-управляющего комплекса, что в свою очередь ведет к применению микроэлектромеханических (МЭМС) датчиков, обладающих существенными уходами и дрейфами [1]. В данной статье приводится сравнительный анализ раздельной и слабосвязанной схем комплексирования на основе данных имитационного моделирования инерциально-измерительного модуля VN-100T и навигационных алгоритмов с целью повышения точности и надежности информационно-управляющего комплекса беспилотного летательного аппарата (БЛА).

Ключевые слова:

имитационное моделирование, беспилотный летательный аппарат, навигационная система, раздельная схема комплексирования, слабосвязанная схема комплексирования, фильтр Калмана

Библиографический список

  1. Zakriya Mohammed, Ibrahim (Abe) M. Elfadel, Mahmoud Rasras. Monolithic Multi Degree of Freedom (MDoF) Capacitive MEMS Accelerometers // Micromachines, 16 November 2018, vol. 9, no. 11. DOI: 0.3390/mi9110602

  2. Гоголев А.А., Горобинский М.А. Определение собственного положения микробеспилотного летательного аппарата в условиях замкнутого пространства // Труды МАИ. 2018. № 101. URL: http://trudymai.ru/published.php?ID=97029

  3. Красильщиков М.Н., Серебряков Г.Г. Современные информационные технологии в задачах навигации и наведения беспилотных маневренных летательных аппаратов. – М.: ФИЗМАТЛИТ, 2009. – 556 с.

  4. Савельев В.М., Антонов Д.А. Выставка бесплатформенной инерциальной навигационной системы беспилотного летательного аппарата на подвижном основании // Труды МАИ. 2011. № 45. URL: http://trudymai.ru/published.php?ID=25497&PAGEN_2=2

  5. Колосовская Т.П. Субоптимальный алгоритм оценивания и параметрической идентификации для навигационных систем летательных аппаратов и других подвижных объектов на основе информации магнитного поля Земли // Труды МАИ. 2016. № 88. URL: http://trudymai.ru/published.php?ID=70666

  6. Alex G Quinchia, Gianluca Falco, Emanuela Falletti, Fabio Dovis. A Comparison between different error modeling of MEMS applied to GPS / INS integrated systems // Sensors (Basel), 24 July 2013, vol. 13, no. 3, pp. 9549 – 9588. DOI:10.3390/s130809549

  7. Calogero Cristodaro, Laura Ruotsalainen, Fabio Dovis. Benefits and Limitations of the Record and Replay Approach for GNSS Receiver Performance Assessment in Harsh Scenarios // Sensors, 7 July 2018, vol. 18, no. 7. DOI: 10.3390/s18072189

  8. Liu Hong Dan, Shu Xiong Ying, Li Xi Sheng. Application Of Strongly Tracking Kalman Filter In MEMS Gyroscope Bias Compensation // 6th International Conference on Advanced Materials and Computer Science, ISAMCS 2017. DOI: 10.23977/icamcs.2017.1004

  9. Accelerometer Errors, 9 July 2015. URL: http://kionixfs.kionix.com/en/document/AN012%20Accelerometer%20Errors.pdf

  10. Vlada Sokolović, Goran Dikić, Rade Stančić. Adaptive Error Damping in the Vertical Channel of the Ins/Gps/Baro – Altimeter Integrated Navigation System // Scientific Technical Review, 2014, vol. 64, no. 2, pp. 14 – 20.

  11. Alberto Manero Contreras, Chingiz Hajiyev. Fault Tolerant Integrated Barometric-Inertial GPS Altimeter // 7th European conferences for aeronautics and aerospace science (EUCASS), 2017. DOI: 10.13009 / EUCASS2017 – 62

  12. Tang. Pham Van, Thang Nguyen Van, Duc Anh Nguyen, Trinh Chu Duc. 15 – State Extended Kalman Filter Design for INS / GPS Navigation System // Journal of Automation and Control Engineering, January 2015, vol. 3, no. 2, pp. 109 -114. DOI: 10.12720/joace.3.2.109-114

  13. Beard & McLain. Small Unmanned Aircraft, Princeton University Press, 2012. URL: https://uavbook.byu.edu/doku.php

  14. Yan Chen, Dan Li, Yanhai Li, Xiaoyuan Ma. Use Moving Average Filter to Reduce Noises in Wearable PPG During Continuous Monitoring // EAI International Conference on Wearables in Healthcare, Budapest, Hungary, vol. eHealth 2016, LNICST 181, pp. 193 – 203. DOI: 10.1007/978-3-319-49655-9_26

  15. Mushfiqul Alam, Jan Rohac. Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth // Sensors, February 2015, vol. 15, no. 2, pp. 3282 - 3298. DOI: 10.3390/s150203282

  16. Paola Pierleoni, Alberto Belli, Lorenzo Maurizi, Lorenzo Palma. A Wearable Fall Detector for Elderly People Based on AHRS and Barometric Sensor // Sensors, September 2016, vol. 16, no. 17, pp. 1 - 1. DOI: 10.1109/JSEN.2016.2585667

  17. Wenjiao Xiao, Zgu, Yu. An Unconventional Multiple Low-Cost IMU and GPS-Integrated Kinematic Positioning and Navigation Method Based on Singer Model // Sensors, October 2019, vol. 19, no. 19. DOI: 10.3390/s19194274

  18. Веремеенко К.К., Галай И.А. Разработка алгоритма калибровки инерциальной навигационной системы на двухосном испытательном стенде // Труды МАИ. 2013. № 63. URL: http://trudymai.ru/published.php?ID=36139

  19. Кузнецов И.М., Пронькин А.Н., Веремеенко К.К. Навигационный комплекс аэропортового транспортного средства // Труды МАИ. 2011. № 47. URL: http://trudymai.ru/published.php?ID=26966

  20. Vishal Awasthi, Krishna Raj. A Comparison of Kalman Filter and Extended Kalman Filter in State Estimation // International Journal of Electronics Engineering, 2011, vol. 3, no. 1, pp. 67 – 71.

  21. Logah Perumal. Representing Rotation in Simulink using Quaternion // Applied Mathematics & Information Science, 1 April 2014, vol. 8, no. 1L, pp. 267 – 272. DOI: 10.12785/amis/081L34

  22. VectorNav Embedded Navigation Solutions. VN – 100 User Manual. URL: https://www.eol.ucar.edu/system/files/VN100manual.pdf


Скачать статью

mai.ru — информационный портал Московского авиационного института

© МАИ, 2000—2024

Вход