Виды механической мощности при гармонических колебаниях


DOI: 10.34759/trd-2022-122-03

Авторы

Попов И. П.

Курганский государственный университет, КГУ, ул. Советская, 63/4, Курган, 640020, Россия

e-mail: ip.popow@yandex.ru

Аннотация

Цель исследования состоит в детализации видов механической мощности при гармонических колебаниях. Показано, что при механических колебаниях развивается не только знакоположительная тепловая мощность, но и знакопеременные реактивные мощности, характеризующие обратимость кинетической и потенциальной энергий. Под активной мощностью понимается среднее за полпериода значение мгновенной мощности, а под реактивной – амплитудное значение. Полная механическая мощность, с одной стороны, описывается формулой Пифагора, а с другой – равна произведению действующих значений гармонических величин. Особенностью комплексного представления является то, что при вычислении полной мощности один из перемножаемых векторов должен быть сопряженным. Представление о механических реактивных, активной и полной мощностях является обобщением соответствующих понятий из электротехники, что является проявлением электро-механического дуализма.

Ключевые слова:

механическая мощность, кинетическая энергия, потенциальная энергия, комплексное представление, векторное представление

Библиографический список

  1. Холостова О.В., Сафонов А.И. О бифуркациях положений равновесия гамильтоновой системы в случаях двойного комбинационного резонанса третьего порядка // Труды МАИ. 2018. № 100. URL: http://trudymai.ru/published.php?ID=93297

  2. Алероева Х.Т., Алероев Т.С. Дробные дифференциальные уравнения и ядра, и малые колебания механических систем // Труды МАИ. 2017. № 94. URL: http://trudymai.ru/published.php?ID=80904

  3. Добрышкин А.Ю. Колебания стержня, несущего малую присоединенную массу // Труды МАИ. 2020. № 110. URL: http://trudymai.ru/published.php?ID=112820. DOI: 10.34759/trd-2020-110-2

  4. Быкова Т.В., Могилевич Л.И., Попов В.С., Попова А.А., Черненко А.В. Радиальные и изгибные колебания круглой трехслойной пластины, взаимодействующей с пульсирующим слоем вязкой жидкости // Труды МАИ. 2020. № 110. URL: http://trudymai.ru/published.php?ID=112836. DOI: 10.34759/trd-2020-110-6

  5. Добрышкин А.Ю., Сысоев О.Е., Сысоев Е.О. Эффективные испытательные стенды для исследования собственных колебаний разомкнутых цилиндрических оболочек и пластин // Труды МАИ. 2020. № 113. URL: http://trudymai.ru/published.php?ID=117957. DOI: 10.34759/trd-2020-113-01

  6. Сысоев О.Е., Добрышкин А.Ю., Нейн С.Н. Аналитическое и экспериментальное исследование свободных колебаний разомкнутых оболочек из сплава Д19, несущих систему присоединенных масс // Труды МАИ. 2018. № 98. URL: http://trudymai.ru/published.php?ID=90079

  7. Aлeрoeвa Х.Т. Дробное исчисление и малые колебания механических систем // Труды МАИ. 2017. № 92. URL: http://trudymai.ru/published.php?ID=76821

  8. Мухаметзянова А.А. Раскачивание и стабилизация равновесия двухмассового маятника ограниченным параметрическим управлением // Труды МАИ. 2015. № 84. URL: http://trudymai.ru/published.php?ID=62975

  9. Добрышкин А.Ю., Сысоев О.Е., Сысоев Е.О. Экспериментальная проверка математической модели вынужденных колебаний разомкнутой тонкостенной оболочки с малой присоединенной массой и жестко защемленными краями // Труды МАИ. 2019. № 109. URL: http://trudymai.ru/published.php?ID=111349. DOI:10.34759/trd-2019-109-4

  10. Петрухин В.А., Мельников В.Е. Маятниковый построитель вертикали с релейным управлением // Труды МАИ. 2017. № 93. URL: http://trudymai.ru/published.php?ID=80344

  11. Грушенкова Е.Д., Могилевич Л.И., Попов В.С., Попова А.А. Продольные и изгибные колебания трехслойной пластины со сжимаемым заполнителем, контактирующей со слоем вязкой жидкости // Труды МАИ. 2019. № 106. URL: http://trudymai.ru/published.php?ID=105618

  12. Семенов М.Е., Соловьев А.М., Попов М.А. Стабилизация неустойчивых объектов: связанные осцилляторы // Труды МАИ. 2017. № 93. URL: http://trudymai.ru/published.php?ID=80231

  13. Бардин Б.С., Савин А.А. Исследование орбитальной устойчивости плоских колебаний симметричного намагниченного спутника на круговой орбите // Труды МАИ. 2016. № 85. URL: http://trudymai.ru/published.php?ID=65212

  14. Благодырёва О.В. Применение метода Ритца и метода конечных элементов к расчёту аэроупругих колебаний крылатой ракеты // Труды МАИ. 2017. № 95. URL: http://trudymai.ru/published.php?ID=84426

  15. Загордан А.А., Загордан Н.Л. О применении специальных обобщенных координат для исследования совместных изгибных колебаний лопастей несущего винта, закрепленного на упругодемпфирующей опоре // Труды МАИ. 2019. № 108. URL: http://trudymai.ru/published.php?ID=109383. DOI: 10.34759/trd-2019-108-4

  16. Рыбников С.И., Нгуен Т.Ш. Аналитическое конструирование системы демпфирования изгибных аэроупругих колебаний крыла самолета // Труды МАИ. 2017. № 95. URL: http://trudymai.ru/published.php?ID=84572

  17. Анимица В.А., Борисов Е.А., Крицкий Б.С., Миргазов Р.М. Расчетные исследования виброперегрузок несущего винта, вызванных пульсацией силы тяги, на базе вихревой теории // Труды МАИ. 2016. № 87. URL: http://trudymai.ru/published.php?ID=69626

  18. Попов И.П. Расчет механических колебаний в поле комплексных чисел // Труды МАИ. 2020. № 115. URL: http://trudymai.ru/published.php?ID=119888. DOI: 10.34759/trd-2020-115-01

  19. Попов И.П. Расчет колебаний для разветвленных механических систем в поле комплексных чисел // Труды МАИ. 2021. № 116. URL: http://trudymai.ru/published.php?ID=121007. DOI: 10.34759/trd-2021-116-01

  20. Попов И.П. Источники силы и скорости, резонансы и антирезонансы // Труды МАИ. 2021. № 117. URL: http://trudymai.ru/published.php?ID=122184. DOI: 10.34759/trd-2021-117-01


Скачать статью

mai.ru — информационный портал Московского авиационного института

© МАИ, 2000—2024

Вход