Колебания композитных тонкостенных цилиндрических разомкнутых оболочек


DOI: 10.34759/trd-2022-122-05

Авторы

Добрышкин А. Ю.*, Журавлева Е. В.**, Сысоев Е. О.***, Сысоев О. Е.***

Комсомольский-на-Амуре государственный университет, КнАГУ, 27, Комсомольск-на-Амуре, Хабаровский край, 681013, Россия

*e-mail: wwwartem21@mail.ru
**e-mail: diana@knastu.ru
***e-mail: fks@knastu.ru

Аннотация

Сооружения с тонкостенными разомкнутыми оболочками имеют оптимальное соотношение внутреннего объёма к площади ограждающей поверхности. Вместе с тем у использования таких оболочек имеются недостатки – тонкостенные разомкнутые оболочки очень чувствительны к вынужденным колебаниям, возникающим от воздействия внешних сил (ветровые и снеговые нагрузки, работа оборудования и т.п.). В статье показана необходимость расчета оболочечных конструкций на динамические процессы от воздействия вынужденных колебаний. Получена модель расчета круговой частоты колебаний тонкостенной цилиндрической композитной разомкнутой оболочки при шарнирном опирании. Для сравнения результатов и определения погрешности между полученной расчетной моделью и апробированным компьютерным расчётом, выполненным в программе «Лира – САПР», был проведен численный эксперимент. Определено влияние количества продольных полуволн на круговую частоту колебаний композитной разомкнутой оболочки.

Ключевые слова:

вынужденные колебания, тонкостенная разомкнутая оболочка, усредненный модуль упругости

Библиографический список

  1. Кубенко В.Д., Ковальчук П.С., Краснопольская Т.С. Нелинейное взаимодействие форм изгибных колебаний цилиндрических оболочек. - Киев: Наукова думка, 1984. – 220 с.

  2. Антуфьев Б.А. Колебания неоднородных тонкостенных конструкций: монография. - М.: Изд-во МАИ, 2011. – 176 с.

  3. Сысоев О.Е., Добрышкин А.Ю., Нейн Сит Наинг. Аналитическое и экспериментальное исследование свободных колебаний разомкнутых оболочек из сплава Д19, несущих систему присоединенных масс // Труды МАИ. 2018. № 98. URL: http://trudymai.ru/published.php?ID=90079

  4. Гусева Ж.И. Особенности планирования производства на авиационном предприятии // Ученые записки Комсомольского-на-Амуре государственного технического университета. 2021. № 4 (52). С. 99-104. DOI: 10.17084/20764359-2021-52-99
  5. Z. Wang, Q. Han, D. H. Nash, P. Liu. Investigation on inconsistency of theoretical solution of thermal buckling critical temperature rise for cylindrical shell // Thin-Walled Structures, 2017, no. 119, pp. 438-446. DOI:10.1016/j.tws.2017.07.002

  6. Sysoev O.E., Dobryshkin A.Y., Nyein Sitt Naing et al. Investigation to the location influence of the unified mass on the formed vibrations of a thin containing extended shell // Materials Science Forum, 2019, vol. 945, pp. 885-892. DOI:10.4028/www.scientific.net/MSF.945.885

  7. Sysoev O.E., Dobrychkin A.Yu. Natural vibration of a thin desing with an added mass as the vibrations of a cylindrical shell and curved batten. ISSN 2095-7262 CODEN HKDXH2 // Journal of Heilongjiang university of science and technology, 2018, vol. 28, no. 1, pp.75–78.

  8. Y. Qu, Y. Chen, X. Long, H. Hua, and G. Meng. Free and forced vibration analysis of uniform and stepped circular cylindrical shells using a domain decomposition method // Applied Acoustics, 2013, vol. 74, no. 3, pp. 425-439.

  9. Foster N., Fernández-Galiano L. Norman Foster: in the 21st Century, AV, Monografías, Artes Gráficas Palermo, 2013, pp. 163–164.

  10. Eliseev V.V., Moskalets A.A., Oborin E.A. One-dimensional models in turbine blades dynamics // Lecture Notes in Mechanical Engineering, 2016, vol. 9, pp. 93-104. DOI:10.1007/978-3-319-29579-4_10

  11. Белосточный Г.Н., Мыльцина О.А. Статическое и динамическое поведение пологих оболочек под действием быстропеременных температурно-силовых воздействий // Труды МАИ. 2015. № 82. URL: http://trudymai.ru/published.php?ID=58524

  12. Кузнецова Е.Л., Тарлаковский Д.В., Федотенков Г.В., Медведский А.Л. Воздействие нестационарной распределенной нагрузки на поверхность упругого слоя // Труды МАИ. 2013. № 71. URL: http://trudymai.ru/published.php?ID=46621

  13. Феоктистов С.И. Определение растягивающих усилий вдоль образующей пуансона с учётом трения при изгибе с растяжением // Ученые записки Комсомольского-на-Амуре государственного технического университета. 2021. № 1 (49). С. 76-82. DOI: 10.17084/20764359_2021_49_76

  14. Канашин И.В., Григорьева А.Л., Хромов А.И., Григорьев Ян.Ю., Машевский В.А. Растяжение сжимаемой полосы с непрерывным полем скоростей перемещений в условиях плоской деформации // Ученые записки Комсомольского-на-Амуре государственного технического университета. 2021. № 3 (51). С. 39-41. DOI: 10.17084/20764359-2021-51-39
  15. Demin A.A., Golubeva T.N., Demina A.S. The program complex for research of fluctuations’ ranges of plates and shells in magnetic field // 11th Students’ Science Conference «Future Information technology solutions», Bedlewo, 3-6 October 2013, pp. 61-66.

  16. Нуштаев Д.В., Жаворонок С.И., Клышников К.Ю., Овчаренко Е.А. Численно-экспериментальное исследование деформирования и устойчивости цилиндрической оболочки ячеистой структуры при осевом сжатии // Труды МАИ. 2015. № 82. URL: http://trudymai.ru/published.php?ID=58589

  17. Грушенкова Е.Д., Могилевич Л.И., Попов В.С., Попова А.А. Продольные и изгибные колебания трехслойной пластины со сжимаемым заполнителем, контактирующей со слоем вязкой жидкости // Труды МАИ. 2019. № 106. URL: http://trudymai.ru/published.php?ID=105618

  18. Hautsch N., Okhrin O., Ristig A. Efficient iterative maximum likelihood estimation of highparameterized time series models, Berlin, Humboldt University, 2014, 34 p.

  19. Саблин П.А., Щетинин В.С. Повышение точности механообработки с помощью использования бесконтактных опор // Ученые записки Комсомольского-на-Амуре государственного технического университета. 2021. № 3 (51). С. 104-106. DOI: 10.17084/20764359-2021-51-104
  20. Андрианов И.К. Численная модель многокритериальной оптимизации тепловой защиты оболочечных элементов в условиях теплового и силового нагружения // Ученые записки Комсомольского-на-Амуре государственного технического университета. 2021. № 3 (51). С. 14-20. DOI: 10.17084/20764359-2021-51-14

  21. Иванкова Е.П. Моделирование и оптимизация выбора свойств материалов и структуры многослойных оболочковых форм по выплавляемым моделям // Ученые записки Комсомольского-на-Амуре государственного технического университета. 2021. № 3 (51). С. 85-89. DOI: 10.17084/20764359-2021-51-85

  22. Евстигнеев А.И., Дмитриев Э.А., Одиноков В.И., Иванкова Е.П., Усанов Г.И., Петров В.В. Разработка новых структур многослойных оболочковых формпо выплавляемым моделям // Ученые записки Комсомольского-на-Амуре государственного технического университета. 2020. № 7 (47). С. 104-107.


Скачать статью

mai.ru — информационный портал Московского авиационного института

© МАИ, 2000—2024

Вход