Experimental validation of regulated magneto-fluid vibration protection system concept

DOI: 10.34759/trd-2019-109-11


Gerasimchuk V. V.1*, Ermakov V. Y.1**, Telepnev P. P.1***, Shapovalov R. V.2****

1. Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia
2. Central Research Institute of Machine Building, TSNIIMash, 4, Pionerskaya str., Korolev, Moscow region, 141070, Russia

*e-mail: gerasimchuk@laspace.ru
**e-mail: ermakov@laspace.ru
***e-mail: telepnev@laspace.ru
****e-mail: shrv1952@yandex.ru


The article is devoted to the experimental studies on vibration load reduction to an acceptable level of the space complex structural elements from the disturbances by devices with moving masses by a magneto-fluidic vibration protection system with an adjustable elastic-damping characteristic

According to the authors’ opinion, namely the magneto-fluidic vibration protection systems are capable of reducing the vibration load of scientific equipment to the levels that ensure its proper functioning under the impact of internal disturbances sources, such as devices with moving masses. Magneto-fluidic vibration protection systems with adjustable elastic-damping characteristics allow direct coupling of electric control channels with the actuating devices of the vibration protection system without intermediate mechanical devices. The high-speed response is ensured thereby, and the structural scheme of the vibration protection system is simplified.

Changing current in the electromagnetic control coil, the experimenters controlled magnetization of the magneto-rheological suspension and, adjusting the elastic-damping characteristic of the vibration protecting system in relation to the movable masses rotation speed, they managed to:

– “cut back” peak values of the force-torque characteristic in the low-frequency region in the area of resonant peak of vertical oscillations to the levels below the allowable one;

– reduce peak values of the force-torque characteristic by 40% in the region of the force-torque characteristic resonant peak of flexural-and-torsional vibrations.

The authors experimentally affirmed the concept of possible reduction of the vibration loading on scientific and precise equipment of the space complex of parasitic disturbing impacts from the force-torque devices with movable masses throughout the whole range of their cranking speed by the magneto-fluid vibration protection system with adjustable elastic-damping characteristic.

The vibration isolation effectiveness with simultaneous required vibration loading ensuring can be achieved by “blocking” the vibration isolator operation in the low-frequency region and excluding generated hazardous manifestation of vibration isolation resonant peaks and “turning-on” the vibration isolation effect of the vibration protection system in both medium- and high-frequency ranges.


vibration protection system, magnetic fluid, vibration loading, space complex


  1. Vorontsov V.A., Karchaev Kh.Zh., Martynov M.B., Primakov P.V. Trudy MAI, 2016, no. 86, available at: http://trudymai.ru/eng/published.php?ID=65702&eng=N

  2. Ledkov A.S., Sobolev R.G. Trudy MAI, 2019, no. 107, available at: http://trudymai.ru/eng/published.php?ID=107856

  3. Gerasimchuk V.V., Efanov V.V., Ermakov V.Yu., Lokhanov I.V. et al. Polet, 2018, no. 8, pp. 33 – 38.

  4. Mikhalev S.M. Trudy MAI, 2019, no. 106, available at: http://trudymai.ru/eng/published.php?ID=105690

  5. Firsanov V.V., Fam V.T. Napryazhenno-deformirovannoe sostoyanie sfericheskoi obolochki na osnove utochnennoi teorii // Trudy MAI, 2019, no. 105, available at: http://trudymai.ru/eng/published.php?ID=104174

  6. Frolov K.V. Vibratsii v tekhnike. Zashchita ot vibratsii i udarov (Vibrations in technology. Vibration and shock protection), Moscow, Mashinostroenie, 1985, vol. 6, 456 p.

  7. Amir’yants G.A., Malyutin V.A. Trudy MAI, 2018, no. 103, available at: http://trudymai.ru/eng/published.php?ID=100600

  8. Gerasimchuk V.V. Dvoinye tekhnologii, 2019, no. 2 (87), pp. 44 – 48.

  9. Gerasimchuk V.V. Trudy MAI, 2019, no. 107, available at: http://trudymai.ru/eng/published.php?ID=107904

  10. Poduraev Yu. Mechatronics: fundamentals, methods and applications: proc. Manual for University students, Moscow, Mechanical Engineering, 2007, 256 p.

  11. Fu K., Gonsales R., Li K. Robototekhnika (Robotics), Moscow, Mir, 1989, 624 p.

  12. Rulev S.V., Samsonov V.N., Savost’yanov A.M., Shmyrin G.K. Upravlyaemye magnitozhidkostnye vibroizolyatory (Controlled magnetic-liquid vibration isolators), Moscow, MO SSSR, 1988, pp. 45 – 47.

  13. Topchii V.D., Rulev S.V., Savost’yanov A.M., Gerasimchuk V.V. Patent RF № 2066005 S1, 27.08.96.

  14. Arkhangelov A.G., Rulev S.V., Ermakov V.Yu., Gerasimchuk V.V. Svidetel’stvo o gosudarstvennoi registratsii programmy dlya EVM № 2016616337, 2018.

  15. Gerasimchuk V.V., Ermakov V.V. Aktual’nye voprosy proektirovaniya avtomaticheskikh kosmicheskikh apparatov dlya fundamental’nykh i prikladnykh nauchnykh issledovanii: sbornik trudov, Khimki, MO, NPO im. S.A. Lavochkina, 2017, pp. 358 – 364.

  16. Ermakov V.Yu. Trudy MAI, 2019, no. 106, URL: http://trudymai.ru/eng/published.php?ID=105679

  17. Pappel S.S. Patent US 3215572, 1965.

  18. Blagodyreva O.V. Trudy MAI, 2018, no. 100, available at: http://trudymai.ru/eng/published.php?ID=93332

  19. Rozentsveig R. Ferrogidrodinamika (Ferrohydrodynamics), Moscow, Mir, 1989, 357 p.

  20. Taketomi S., Tikadzumi S. Magnitnye zhidkosti (Magnetic fluids), Moscow, Mir, 1993, 272 p.

  21. Berkovskii B.M., Medvedev V.F., Krakov M.S. Magnitnye zhidkosti (Magnetic fluids), Moscow, Khimiya, 1989, 240 p.


mai.ru — informational site MAI

Copyright © 2000-2021 by MAI