A method for a spacecraft maneuver detection based on current trajectory measurements


DOI: 10.34759/trd-2019-109-17

Аuthors

Glushchenko A. A.*, Khokhlov V. P.

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: andrglu@mail.ru

Abstract

Two main tasks are being solved in the process of space surveillance. These are space objects detection and their tracking to maintain necessary accuracy of the orbit parameters. Unpredictable parameters changes of a space object movement, caused by the propulsion system starting (maneuver), spatial orientation changing or destruction, can become the cause of tracking process failures. To avoid such situations, timely detection of such unpredictable movement parameters changing while trajectory changes processing and solve the problem of a space object movement parameters refinement are necessary.

Analysis of known ways of unpredictable changes detecting in movement parameters of space objects revealed that with information limiting existing in practice, the quality of space monitoring problems solution can be ensured through the application of trajectory measurements processing methods with the space object maneuver detection.

Considering practical implementation of such method, employed in the process of outer space monitoring, reveals that maneuver-detecting problem is solved currently with acceptable quality under the standard conditions of space objects tracking. However, in some cases, such as emergency (off-normal) situations onboard an important spacecraft, the requirements for operativeness of supplying a customer with information on a spacecraft movement parameters may be significantly increasing.

The article considers a method for detecting and determining parameters of a spacecraft maneuver performed on the time interval between the two adjacent stages of its monitoring by measuring tools. This method employs a spacecraft orbital parameters changes as informative signs for maneuver detection. Maneuvers parameters determining (maneuver time and speed increment) is being performed using relationships of the linearized spacecraft movement model. Based on simulation, evaluation of its application effectiveness while maneuvers parameters of low orbit spacecraft detecting and determining was performed.

In contrast to the known ones, the advantage of the regarded method consists in the possibility of increasing efficiency of both maneuver detecting and its parameters determining in conditions of the existing information limitations. The results obtained using the method for maneuver parameters evaluation can be used to solve the problem of a spacecraft movement parameters refinement.

Keywords:

space control, maneuver, spacecraft, motion parameters, trajectory measurements

References

  1. Narimanov G.S., Tikhonravov M.K. Osnovy teorii poleta kosmicheskikh apparatov (Fundamentals of the theory of spacecraft flight), Moscow, Mashinostroenie, 1972, 608 p.

  2. Savrasov Yu.S. Metody opredeleniya orbit kosmicheskikh ob"ektov (Methods for space objects orbits determining), Moscow, Mashinostroenie, 1981, 174 p.

  3. Khutorovskii Z.N. Kosmicheskie issledovaniya, 1993, vol. 31, no. 4, pp. 101 – 114.

  4. Aleshin V.I., Gridchina T.A., Kondrashin M.A., Lavrent’ev V.G., Lobachev V.I., Oleinikov I.I., Pavlov V.P. Kosmonavtika i raketostroenie, 2014, no. 3, pp. 112 – 122.

  5. Khutorovskii Z.N., Boikov V.F., Pylaev L.N. Kontrol’ kosmicheskikh ob"ektov na nizkikh vysotakh. Okolozemnaya astronomiya, kosmicheskii musor (Space objects control at low altitudes. Near-Earth astronomy, space debris), Moscow, Institut astronomii RAN, 1998, pp. 34 – 101.

  6. Khutorovsky Z.N., Boikov V.F., Pylaev L.N. Catalog Maintenance of Low-Earth-Orbit Satellites: Principles of the Algorithm, Journal of Guidance, Control and Dynamics, 1999, vol. 22, no. 6, pp. 745 – 758.

  7. Kamensky S., Tuchin A., Stepanyants V., Alfriend K.T. Algorithm of Automatic Detection and Analysis of non-Evolutionary Changes in Orbital Motion of Geocentric Objects, AAS/AIAA Astrodynamics Specialist Conference, Paper AAS 09-103, available at: http://www.kiam1.rssi.ru/pubs/AAS_09-103.pdf

  8. Khutorovskii Z.N. Metody obrabotki izmerenii pri katalogizatsii KO v TsKKP, 2009, available at: http://lfvn.astronomer.ru/report/0000056/katkm.pdf

  9. Grishin I.Yu. Iskusstvennyi intellect, 2008, no. 4, pp. 62 – 73.

  10. Fisenko V.T., Vilesov L.D., Mozheiko V.I., Fisenko T.Yu. Obnaruzhenie manevra ob"ekta i prognozirovanie ego traektorii v televizionnoi sledyashchei sisteme. Izvestiya Vuzov. Priborostroenie, 2009, vol. 52, no. 8, pp. 12 – 19.

  11. Goncharenko V.I., Kobzar’ A.A., Kucheryavenko D.S. Trudy MAI, 2011, no. 46, available at: http://trudymai.ru/eng/published.php?ID=25995

  12. Borovin G.K., Zakhvatkin M.V., Stepan’yants V.A., Tuchin A.G., Tuchin D.A., Yaroshevskii V.S. Vestnik MGTU im. N.E.Baumana. Estestvennye nauki, 2012, no. 3, pp. 27 – 36.

  13. Baranov A.A., Karatunov M.O. Vestnik MGTU im. N.E. Baumana. Mashinostroenie, 2015, no. 5, pp. 25 – 37.

  14. Goryuchkin V.A., Kim A.K., Lagutkin V.N., Luk’yanov A.P., Starostenko A.M. Elektromagnitnye volny i elektronnye sistemy, 2013, vol. 18, no. 5, pp. 64 – 67.

  15. Aksenov O.Yu., Veniaminov S.S., Yakubovskii SV. Ekologicheskii vestnik nauchnykh tsentrov, 2017, no. 4 (2), pp. 12 – 19.

  16. Khutorovskii Z.N. Metod otsenki riska stolknoveniya pri podderzhanii kataloga KO v TsKKP, 2009, available at: http://lfvn.astronomer.ru/report/0000056/probcoll.pdf

  17. Raikunov G.G. Kosmicheskii musor. Metody nablyudeniya i modeli kosmicheskogo musora (Observation methods and space debris models), Moscow, FIZMATLIT, 2014, book 1, 248 p.

  18. Sokolov N.L. Trudy MAI, 2014, no. 77, available at: http://trudymai.ru/eng/published.php?ID=52950

  19. Kuzmak G.E., Braude A.Z. Kosmicheskie issledovaniya, 1969, vol. 7, no. 3, pp. 323 – 338.

  20. Il’in V.A., Kuzmak G.E. Optimal’nye perelety kosmicheskikh apparatov s dvigatelyami bol’shoi tyagi (Optimal flights of spacecraft with high-thrust engines), Moscow, Nauka, 1976, 744 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход