Verification of results of determining rotational derivative of aircraft heel in a wide range of angles of attack


DOI: 10.34759/trd-2019-109-23

Аuthors

Makhnev M. S.*, Fevralskikh A. V.

Company «CADFEM CIS», 46, str. Suzdalskaya, office 203, Moscow, 111672, Russia

*e-mail: kleonorm@gmail.com

Abstract

The article gives an account of aerodynamics numerical modelling to determine rotational derivatives of aircraft heel at angle of attack values range from – 5° to 90°. The aircraft reversed motion is being modeled, with this, the incident flow velocity vector and angular rotational speed vector are collinear. Numerical modeling (CFD modeling) of aerodynamics is based on solving the Reynolds-averaged Navier-Stokes equations, and closed by k-ε Realizable turbulence model, by control volume method. For CFD modeling of laminar-turbulent transition near the aircraft surface, the presented work employs wall functions of the Enhanced Wall Treatment type.

The results of stationary coefficients determining of aircraft aerodynamic forces and moments by CFD modeling are in good agreement with the results of experiments with a scaled aircraft model in a wind tunnel. Rotational derivative values of the roll moment coefficient obtained from the of numerical modeling and experimental results are also in good agreement with most values of the aircraft angles of attack. Values mismatch of the lateral force derivatives and the yaw moment with respect to the angular roll velocity obtained by different methods is determined by the corresponding aerodynamic disturbances and measurement errors during their experimental determination. For further research trend, the authors consider reproduction of experimental conditions of a wind tunnel in CFD modeling, such as structures of model mounting, consistency assessments of experimental data recording with the model rotation frequency and eddy formation frequency. As a whole, the results of the study reveal that CFD modeling allows determining not only coefficients of aerodynamic forces and moments, but their rotational derivations by the heel velocity. However, conducting of extra experiments seems up-to-date for verification of various approaches to rotation modelling.

Keywords:

aerodynamic forces and moments; rotational velocity components; rotational derivatives; CFD modelling

References

  1. Ostoslavskii I.V. Aerodinamika samoleta. (Aircraft dynamics), Moscow, Gosudarstvennoe izdatel'stvo oboronnoi promyshlennosti, 1957, 560 p.

  2. Karpenko O.N., Kostin P.S. Trudy MAI, 2019, no. 104, available at: http://trudymai.ru/eng/published.php?ID=102426

  3. Vinogradov Yu.A. et al. Uchenye zapiski TsAGI, 2003, vol. 34, no. 3–4, pp. 84 - 90.

  4. Golovkin M.A. Trudy MAI, 2012, no. 55, available at: http://trudymai.ru/eng/published.php?ID=30020

  5. Zakharov M.A. Trudy MAI, 2004, no. 14, available at: http://trudymai.ru/eng/published.php?ID=34236

  6. Mikeladze V.G. Aviatsiya obshchego naznacheniya (General purpose aviation, recommendations for designers), Moscow, Izd-vo TsAGI, 1996, 296 p.

  7. Sukhorukov A.L., Titov M.A., Chernyshev I.A. Fundamental'naya i prikladnaya gidrofizika, 2016, vol. 9, no. 2, pp. 52 - 61.

  8. Egorchev M.V., Tyumentsev Yu.V. Trudy MAI, 2017, no. 94, available at: http://trudymai.ru/eng/published.php?ID=81171

  9. Fevral'skikh A.V. Razrabotka metodiki proektirovaniya aerogidrodinamicheskoi komponovki amfibiinogo sudna na vozdushnoi podushke s aerodinamicheskoi razgruzkoi na osnove chislennogo modelirovaniya (Technique development for aerodynamic configuration of amphibious air-cushion vessel with aerodynamic deloading design based on numerical modeling) Doctor's thesis, Nizhnii Novgorod, Nizhegorodskii gosudarstvennyi tekhnicheskii universitet im. R.E. Alekseeva, 2017, 175 p.

  10. Kal'yasov P.S. et al. Morskoi vestnik, 2017, no. 3, pp. 22 - 25.

  11. Fevral'skikh A.V., Kal'yasov P.S., Lobachev M.P., Luk'yanov A.I., Shabarov V.V. XI Mezhdunarodnaya nauchnaya konferentsiya po amfibiinoi i bezaerodromnoi aviatsii “Gidroaviasalon–2016”, Moscow, Izdatel'skii otdel TsAGI im. Zhukovskogo, 2016, pp. 233 – 238.

  12. Tatar M., Masdari M. Investigation of pitch damping derivatives for the Standard Dynamic Model at high angles of attack using neural network, Aerospace Science and Technology, 2019, vol. 92, pp. 685 - 695.

  13. Abramov N.B. et al. Aerodynamic Modeling for Poststall Flight Simulation of a Transport Airplane, Jourlal Aircraft, 2019, vol. 56, no. 4, pp. 1427 - 1440.

  14. Oktay E., Akay H. CFD predictions of dynamic derivatives for missiles, 40th AIAA Aerospace Sciences Meeting & Exhibit, 2002. DOI: 10.2514/6.2002-276

  15. Shelton A., Martin C., Silva W. Characterizing aerodynamic damping of a supersonic missile with CFD, AIAA Aerospace Sciences Meeting, 2018, no. 210059, pp. 1 - 25.

  16. Da Ronch A. et al. Computation of dynamic derivatives Using CFD, 28th AIAA Applied Aerodynamics Conference, 2010, vol. 1, pp. 1 – 27. DOI: 10.2514/6.2010-4817

  17. Mi B., Zhan H., Chen B. New Systematic CFD Methods to Calculate Static and Single Dynamic Stability Derivatives of Aircraft, Mathematical Problems in Engineering, 2017. DOI: 10.1155/2017/4217217

  18. Golovkin M.A., Golovkina E.V. Trudy MAI, 2016, no. 90, available at: http://trudymai.ru/eng/published.php?ID=74692

  19. Golovkin M.A., Efremov A.A., Makhnev M.S. Trudy MAI, 2017, no. 97, available at: http://trudymai.ru/eng/published.php?ID=87338

  20. Golovkin M.A., Efremov A.A., Makhnev M.S. Uchenye zapiski TsAGI, 2018, vol. 49, no. 1, pp. 39 – 58.

  21. Pavlenko O.V. Nauchnyi vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoi aviatsii, 2009, no. 149, pp. 156 - 159.

  22. Belotserkovskii S.M., Skripach B.K. Aerodinamicheskie proizvodnye letatel'nogo apparata i kryla pri dozvukovykh skorostyakh (Aerodynamic Derivatives of Aircraft and Wings at Subsonic Velocities), Moscow, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1975, 424 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход