Two-wave optical lunar navigation system


DOI: 10.34759/trd-2020-112-13

Аuthors

Bagrov A. V.1*, Dmitriev A. O.2**, Leonov V. A.1***, Moscatin'ev I. V.2****, Sysoev V. K.2*****

1. Institute of Astronomy of the Russian Academy of Sciences, (INASAN), 48, Pyatnitskaya str., Moscow, 119017, Russia
2. Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: abagrov@inasan.ru
**e-mail: dao@laspace.ru
***e-mail: leonov@inasan.ru
****e-mail: miv@laspace.ru
*****e-mail: SysoevVK@laspace.ru

Abstract

The article proposes creation of a global lunar optical navigation system based on light beacons located on the lunar surface, operating at two wavelengths. This system, based on optoelectronic devices on spacecraft and light beacons, will allow obtaining a high-precision navigation system both on the Moon surface and in near-Moon space.

Previous articles analyzed in detail the required number of spacecraft to create a radio-technical lunar navigation system and showed that this would require a grouping of eighteen navigation lunar satellites, and a complex data management system for this structure.

The beacons application allows create a lunar navigation connected system (LNCS) on new principles, which allow doing with a minimum number of navigation satellites. In addition, such system is needed, which can be built-up stage-by-stage from the local system (created for a separate lunar area) to the global one (over the entire lunar surface), and from periodic possibility of the object positioning to the twenty-four-hour one with high measuring operativeness.

The main purpose of the global optical navigation system based on a two-wave system of light beacons, being deployed on the lunar surface, is maximizing accessibility for the LNCS spacecraft in any circumstances. Application of two types of the light beacons, namely ultraviolet and infrared bands will allow observe the reference beacons by the spacecraft from both the Moon orbit and being placed at the Lagrange point. Ultraviolet emitters will allow reduce noises and exposure by the Sun radiation while the beacon surveillance by a spacecraft, while the infrared radiation will be able to pass through the Earth atmosphere for registration by the Earth-based telescopes. The proposed navigation system based on measuring optoelectronic devices located on the spacecraft and light beacons on the objects being positioned will allow high-precision navigation system, which will ensure spatial positioning of the objects on both lunar surface and near-Moon space.

Keywords:

Moon, navigation, telescope, LED beacons

References

  1. Perov A.I., Kharisov V.N. GLONASS. Printsipy postroeniya i funktsionirovaniya (GLONASS. Principles of developing and functioning), Moscow, Radiotekhnika, 2010, 800 p.

  2. Gordienko E.S., Ivashkin V.V., Simonov A.V. Vestnik NPO im. S.A. Lavochkina, 2016, no. 4, pp. 40 - 54.

  3. Shirenin A.M., Mazurova E.M., Bagrov A.V. Kosmicheskie issledovaniya, 2016, vol. 54, no. 6, pp. 93 - 498.

  4. Bagrov A.V., Dmitriev A O., Leonov V.A., Mit'kin A.S., Moskatin'ev I.V., Sysoev V.K., Shirshakov A.E. Trudy MAI, 2018, no. 99, available at: http://trudymai.ru/eng/published.php?ID=91814

  5. Starinova O.L., Fain M.K. Trudy MAI, 2015, no. 84, available at: http://trudymai.ru/eng/published.php?ID=63043

  6. Slesarenok S.V., Shepet' I.P., Rubinov V.I., Titov Yu.P. Trudy MAI, 2016, no. 86, available at: http://trudymai.ru/eng/published.php?ID=66381

  7. Bagrov A.V., Dmitriev A.O., Leonov V.A., Moskatin'ev I.V., Sysoev V.K., Shirshakov A.E. Kosmicheskaya tekhnika i tekhnologii, 2019, no. 4 (27), pp. 12 – 28.

  8. Vinogradov A.P. Lunnyi grunt iz morya “Izobiliya” (Lunar soil from the “Abundance” Sea), Moscow, Nauka, 1974, 624 p.

  9. Vernigora L.V., Pichkhadze K.M., Sysoev V.K. Trudy MAI, 2017, no. 95, available at: http://trudymai.ru/eng/published.php?ID=84553

  10. Dmitriev A.L. Poluprovodnikovye istochniki sveta dlya peredachi i obrabotki informatsii (Semiconductor light sources for information transmitting and processing), Saint Petersburg, SPBGUITMO, 2006, 48 p.

  11. Zakharov A.I., Mironov A.V., Prokhorov M.E., Biryukov A.V. et al. Astronomicheskii zhurnal, 2013, vol. 90, no. 3, pp. 223 - 241.

  12. Aldokhin P.A., Rafailovich A.S. Interehkspo Geo-Sibir', 2005, vol. 6, pp. 42 – 47.

  13. Avdochenko B.I., Vilisov A.A., Pushkarev V.P., Teplyakov K.V., Yurchenko V.I. Poluprovodnikovaya svetotekhnika, 2010, no. 3, pp. 53 - 55.

  14. Ul'trafioletovye svetodiody LG Innotek, available at: http://www.azimp.ru/catalogue/UV_LED

  15. Matritsa GSENSE6060BSI-AM NPK “FotonikA”, available at: https://www.npk-photonica.ru/product/1135/

  16. Zotov V.D., Vinogradova E.P. Materialy Rossiiskoi konferentsii “Tekhnicheskie i programmnye sredstva sistem upravleniya, kontrolya i izmereniya”, Moscow, IPU RAN, 2008, pp. 632 - 637.

  17. Blank T.V., Gol'dberg Yu.A. Fizika i tekhnika poluprovodnikov, 2003, vol. 37, no. 9, pp. 1025 - 1055.

  18. Shugarov A.S., Savanov I.S., Kuzin S.V. Vestnik NPO Lavochkina, 2014, no. 5, pp. 86 – 91.

  19. Boyarchuk A., Moisheev A., Shustov B. A 170-CM Space UV Telescope. The Spectrum-Uv Project, Proceedings of the Conference held in Sevilla, Spain, 11th to 14th November 1997, 809 p.

  20. Rodchenko V.V., Sadretdinova Eh.R., Zagovorchev V.A., Lugovtsov I.V. Trudy MAI, 2012, no. 59, available at: http://trudymai.ru/eng/published.php?ID=35254


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход