Automatic landing systems of aerial vehicles: analytical review. Information support


DOI: 10.34759/trd-2020-113-11

Аuthors

Pogosyan M. A.1*, Vereikin A. A.2**

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. PJSC UAC Sukhoi Design Bureau, 23A, Polikarpova str., Moscow, 125284, Russia

*e-mail: mai@mai.ru
**e-mail: aautres@gmail.com

Abstract

The article demonstrates that the basic problematic areas of aerial vehicles (AV) automatic landing systems (ALS) developing are information support and automatic control.

The purpose of the work being presented consists in studying the issues of information support, actual for the ALS of both manned and unmanned aerial vehicles, identifying the basic problems, hindering the AV ALS development with regard to to the information support and technical solutions, which can be employed while the AV ALS developing.

The article considered radio and satellite information support systems for automatic landing (AL) ensuring, technical vision systems (TVS), as well as a number of other systems. The authors suggested a multilevel classification of tools for the ALS information support.

The ALS radio-technical information support systems, capable of ensuring the ALS prior to the instant of the AV landing on the runway, assume high material costs on both installation and operation. Satellite navigation systems (SNS) with functional augmentations seem to be their alternative. However, in the case of large-scale warfare the satellite signal accessibility remains in question. Application of systems, ensuring autonomous navigation, such as TVS, correlation-extreme systems, etc., which also, in their turn, are not free from disadvantages and can depend significantly on the external conditions, can be the way-out to the situation.

Inertial navigation system (INS), corrected by the information received from the satellite navigation system with functional augmentation (differential navigation) and radio-technical navigation system (as a backup source of information), may be suggested as the core of the AL information support.

While the ALS designing, It can be recommended to develop information support based on the complex information processing by the following systems: INS, the ILS radio beacon system, global SNS with additional augmentation, and TVS. When designing the ALS for military purpose aerial vehicles, we recommend information support developing based on the computer processing of the information from the following sources: : INS, landing radar, global SNS with additional augmentation, VS, correlation-extreme navigation system using onboard radio systems.

The near-term prospects for the ALS development with regard to information support are associated with employing information received from the INS, radio navigation systems and global SNS with additional augmentation. The medium-term prospects of the ALS are associated with the widespread application of the capabilities of information complexing from external sources of various physical nature (mainly SNS, VS and correlation-extreme navigation systems using on-board radio systems) and increasing the accuracy characteristics of onboard INS. The long-term prospects of ALS are associated with autonomous navigation systems employing capable to operate in non-deterministic conditions, including the resources of control degradation.

Keywords:

aerial vehicle, unmanned aerial vehicle, information support, navigation, landing, automatic landing system

References

  1. A Statistical Analysis of Commercial Aviation Accidents 1958-2019. URL: https://www.airbus.com/content/dam/corporate-topics/publications/safety-first/Statistical-Analysis-of-Comercial-Aviation-Accidents-1958-2019.pdf

  2. Boeing. Statistical Summary of Commercial Jet Airplane Accidents. Worldwide Operations. 1959 – 2018. 50th Edition. URL: https://www.boeing.com/resources/boeingdotcom/company/about_bca/pdf/statsum.pdf

  3. Wild G., Gavin K., Murray J., Silva J., Baxter G. A Post-Accident Analysis of Civil Remotely-Piloted Aircraft System Accidents and Incidents, Journal of Aerospace Technology and Management, 2017, vol. 9, no. 2, pp. 157 - 168. DOI: 10.5028/jatm.v9i2.701

  4. Williams K. A summary of unmanned aircraft accident/incident data: human factors implications. U. S. Department of Transportation Report, Final Report, 2004, 14 p. URL: https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2000s/media/0424.pdf

  5. Manning S.D., Rash C.E., LeDuc P.A., Noback R.K., McKeon J. The role of human causal factors in U. S. army unmanned aerial vehicle accidents, USAARL Report, Tech. Rep., 2004, 30 p. DOI:10.21236/ada421592

  6. Kharin E.G., Kopylov I.A., Kopelovich V.A., Klabukov E.V. Novosti navigatsii, 2010, no. 1, pp. 8 - 17.

  7. Kharin E.G., Kopelovich V.A., Klabukov E.V., Kopylov I.A., Yakushev A.F. Novosti navigatsii, 2009, no. 1, pp. 10 - 19.

  8. JPALS Guides An F/A-18A Hornet To First Automatic Landing. Defense Aerospace. URL: http://www.defense-aerospace.com/article-view/release/2840/f_18a-makes-automatic-landing-with-jpals-(aug.-31).html

  9. Shcherbakov V. Tekhnika i vooruzhenie, 2014, no. 6, pp. 27 - 33.

  10. Adams E. New Navy tech makes it easy to land on a carrier. Yes, easy. Wired. URL: https://www.wired.com/2016/08/new-navy-tech-makes-landing-aircraft-carrier-breeze

  11. Butler A. Again and again. Carrier, civil aviation could eventually take lessons from UCAS landing trials, Aviation Week & Space Technology, 2013, vol. 175, no. 27, pp. 50 - 51.

  12. Eurocontrol air traffic management guidelines for Global Hawk in European airspace. European Organisation for the Safety of Air Navigation. URL: https://www.eurocontrol.int/sites/default/files/publication/files/atm-guidelines-for-global-hawk-in-european-airspace-20101205.pdf

  13. Louis J., Marchetto A., Maretsis M., Mijaris F. NEURON: an international cooperation to enhance innovation. URL: https://www.icas.org/media/pdf/ICAS%20Congress%20General%20Lectures/2014/ICASnEUROn.pdf

  14. Zinov'ev N.V., Kot M.A. II Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Issledovaniya i razrabotki v perspektivnykh nauchnykh oblastyakh”: sbornik trudov, Novosibirsk, Izd-vo “Tsentr razvitiya nauchnogo sotrudnichestva”, 2017, pp. 59 - 62.

  15. Shelkovnikov D.N., Krivenko S.V., Shelkovnikov N.D. Vserossiiskaya nauchno-prakticheskaya konferentsiya uchenykh, prepodavatelei, aspirantov, studentov, spetsialistov promyshlennosti i svyazi, posvyashchennoi Dnyu radio: sbornik trudov, Omsk, Izd-vo “KAN”, 2014, pp. 196 - 214.

  16. Shane S., Sanger D.E. Drone Crash in Iran Reveals Secret U.S. Surveillance Effort, The New York Times. URL: https://nytimes.com/2011/12/08/world/middleeast/drone-crash-in-iran-reveals-secret-us-surveillance-bid.html

  17. Kong W., Zhou D., Zhang D., Zhang J. Vision-based Autonomous Landing System for Unmanned Aerial Vehicle: A Survey, 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI). DOI: 10.1109/MFI.2014.6997750

  18. Gulevich S.P., Veselov Yu.G., Pryadkin S.P., Tyrnov S.D. Nauka i obrazovanie, 2012, no. 12, pp. 165 - 182. DOI: 10.7463/1212.0500452

  19. Smirnov Yu.S., Larionov V.A., Yurasova E.V. Vestnik YuUrGU. Seriya: Komp'yuternye tekhnologii, upravlenie, radioelektronika, 2014, vol. 14, no. 3, pp. 57 - 64.

  20. Voitovich N.I., Zhdanov B.V., Zotov A.V. Vestnik YuUrGU. Seriya: Komp'yuternye tekhnologii, upravlenie, radioelektronika, 2013, vol. 13, no. 4, pp. 55 - 69.

  21. Mazur V.N., Khlgatyan S.V., Ardalinova A.E. Trudy MIEA. Navigatsiya i upravlenie letatel'nymi apparatami, 2011, no. 4, pp. 62 - 73.

  22. Kharin E.G., Kopylov I.A., Kopelovich V.A., Mineev M.I., Yasenok A.V., Drozhzhina A.Yu. Novosti navigatsii, 2010, no. 4, pp. 19 - 23.

  23. Vereikin A.A., Lerner I.I. Vserossiiskaya nauchno-prakticheskaya konferentsiya s mezhdunarodnym uchastiem “Novye tekhnologii, materialy i oborudovanie rossiiskoi aviakosmicheskoi otrasli”: sbornik trudov, Kazan', Izd-vo Akademii nauk respubliki Tatarstan, 2016, vol. 2, pp. 404 - 409.

  24. Feather J.B., Craven B.K. Microwave Landing System Autoland System Analysis. NASA. Report NASA CR-189551, 1991, 62 p.

  25. Zav'yalov V.A., Korol' V.M., Petukhov S.G. Novosti navigatsii, 2019, no. 1, pp. 15 - 19.

  26. Shcherbinin V.V., Sviyazov A.V., Kvetkin G.A. Izvestiya YuFU. Tekhnicheskie nauki, 2015, vol. 162, no. 1, pp. 6 - 13.

  27. Salih A.A.Al-A., Zhahir A. Design of a high accurate aircraft ground-based landing system, International Journal of Engineering Trends and Technology, 2013, vol. 4, no. 3, pp. 415 - 429.

  28. Bol'shakov Yu.P., Nechaev E.E. Nauchnyi vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoi aviatsii, 2005, no 96, pp. 97 - 102.

  29. Agarwal S., Hablani H.B. Automatic Aircraft Landing over Parabolic Trajectory using Precise GPS Measurements, 2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011. International Journal of Computer Applications (IJCA), 2011, no. 1, pp. 38 - 45.

  30. Satellite Navigation – Ground Based Augmentation System (GBAS). URL: http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/laas/

  31. Neri P. Use of GNSS signals and their augmentations for Civil Aviation navigation during Approaches with Vertical Guidance and Precision Approaches, PhD thesis, Doctorat de l’Universite de Toulouse, November 2011, 245 p.

  32. Pruss L.V. Aktual'nye problemy aviatsii i kosmonavtiki. Tekhnicheskie nauki, 2012, vol. 1, no. 8, pp. 192 - 193.

  33. Stevens J., Pierce B. Joint Precision Approach and Landing System (JPALS). Land-Based JPALS Technical Overview, AFCEA CNS/ATM Orlando, FL, 15 June 2011, 25 p.

  34. Stanford GPS Lab – JPALS. URL: http://waas.stanford.edu/research/jpals.htm

  35. Soyuz aviaproizvoditelei. Lokal'naya kontrol'no-korrektiruyushchaya stantsiya LKKS-A-2000 (GBAS). URL: www.aviationunion.ru/Files/Nom_1_Spektr.doc

  36. Zavalishin O.I., Lukoyanov V.A. Novosti navigatsii, 2007, no. 4, pp. 13 - 16.

  37. Azoulai L., Neri P., Milner C., Macabiau C., Walter T. SBAS Error Modelling for Category I Autoland, Proceedings of the ION GNSS 2012, 17-21 September 2012, Nashville, TN, USA. pp. 1334 - 1337.

  38. Veremeenko K.K., Antonov D.A. XXIII Sankt-Peterburgskaya Mezhdunarodnaya konferentsiya po integrirovannym navigatsionnym sistemam: sbornik trudov, Saint Petersburg, Izd-vo TsNII “Elektropribor”, 2016, pp. 497 - 500.

  39. Muja M., Lowe D.G. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration, Proceedings of International Conference on Computer Vision Theory and Applications, Lisboa, Portugal, February 5-8, 2009, vol. 1.

  40. Rublee E., Rabaud V., Konolige K., Bradski G. ORB: an efficient alternative to SIFT or SURF, IEEE International Conference on Computer Vision (ICCV), 6-13 Nov. 2011, Barcelona, Spain, pp. 2564 - 2571. DOI: 10.1109/ICCV.2011.6126544

  41. Bay H., Tuytelaars T., van Gool L. SURF: Speeded Up Robust Features, Computer Vision – ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006, pp. 404 – 417. DOI: 10.1007/11744023_32

  42. Alpatov B.A., Babayan P.V., Koblov Yu.S., Murav'ev V.S., Strotov V.V., Fel'dman A.B. Izvestiya Yuzhnogo federal'nogo universiteta. Tekhnicheskie nauki, 2012, vol. 128, no. 3, pp. 85 - 91.

  43. Sokolov S.M., Boguslavskii A.A., Fedorov N.G., Vinogradov P.V. Izvestiya Yuzhnogo federal'nogo universiteta. Tekhnicheskie nauki, 2015, vol. 162, no. 1, pp. 96 - 109.

  44. Vezinet J., Escher A.-C., Guillet A., Macabiau C. State of the art of image-aided techniques for aircraft approach and landing, International Technical Meeting of The Institute of Navigation, January 2013, San Diego, USA, pp. 473 - 607.

  45. Antsev G.V., Makarenko A.A., Turnetskii L.S. Vserossiiskaya nauchno prakticheskaya konferentsiya po imitatsionnomu modelirovaniyu i ego primeneniyu v nauke i promyshlennosti “Imitatsionnoe modelirovanie. Teoriya i praktika”: sbornik dokladov. Vol. 2, Saint Petersburg, OAO “TsTSS”, 2009, pp. 17 - 21.

  46. Williams P., Crump M. Intelligent Landing System for Landing UAVs at Unsurveyed Airfields, 28th Congress of the International Council of the Aeronautical Sciences, 23-28 September, 2012, Brisbane, Australia, Paper ICAS 2012-11.6.2, 19 p.

  47. Laiacker M., Kondak K., Schwarzbach M., Muskardin T. Vision Aided Automatic Landing System for Fixed Wing UAV, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3-7 November, 2013, Tokyo, Japan, pp. 2971 - 2976. DOI: 978-1-4673-6358-7/13/$31.00

  48. Coutard L., Chaumette F., Pflimlin J.M. Automatic landing on aircraft carrier by visual servoing, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 25-30 September, 2011, San Francisco, CA, USA, pp. 2843 - 2848. DOI: 10.1109/IROS.2011.6094887

  49. Bondarev V.G. Nauchnyi vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoi aviatsii, 2012, no. 185, pp. 124 - 131.

  50. Bondarev V.G., Lopatkin D.V., Smirnov D.A. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Sistemnyi analiz i informatsionnye tekhnologii, 2018, no. 2, pp. 44 - 51.

  51. Antonov D.A., Zharkov M.V., Kuznetsov I.M., Lunev E.M., Pron'kin A.N. Trudy MAI, 2016, no. 91. URL: http://trudymai.ru/eng/published.php?ID=75632

  52. Nigrutsa I.V., Grebennikov A.V., Kazantsev M.Yu. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imenie akademika M.F. Reshetneva, 2012, no. 1, pp. 96 - 99.

  53. Veremeenko K.K., Antonov D.A., Zharkov M.V., Pron'kin A.N., Kuznetsov I.M. XII Vserossiiskoe soveshchanie po problemam upravleniya VSPU-2019: sbornik trudov, Moscow, Institut problem upravleniya im. V.A. Trapeznikova RAN, 2019, pp. 1353 - 1358.

  54. Veremeenko K.K., Pron'kin A.N. Novosti navigatsii, 2012, no. 3, pp. 16 - 22.

  55. Aref'ev R.O., Aref'eva N.G., Skrypnik O.N. Trudy MAI, 2017, no. 92. URL: http://trudymai.ru/eng/published.php?ID=77182

  56. Beyeler A., Zufferey J-C., Floreano D. optiPilot: control of take-off and landing using optic flow // Proceedings of the European Micro Air Vehicle conference and competition (EMAV), 2009, Delft, Netherlands, pp. 1 - 8.

  57. Kondrashov Ya.V., Fialkina T.S. Nauchnyi vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoi aviatsii, 2011, no. 164, pp. 78 - 84.

  58. Lowe D.G. Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 2004, vol. 60, no. 2, pp. 91 – 110.

  59. Vizil'ter Yu.V., Zheltov S.Yu. Tekhnicheskoe zrenie v sistemakh upravleniya mobil'nymi ob"ektami – 2010: trudy konferentsii-seminara. Vyp. 4, Moscow, KDU, 2011, pp. 11 - 44.

  60. Niles F.A., Conker R.S., El-Arini B.M., O’Laughlin D.G., Baraban D.V. Wide Area Multilateration for Alternate Position, Navigation and Timing (APNT). URL: https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/library/documents/apnt/media/wam_whitepaperfinal_mitre_v2.pdf

  61. Naumov A.I., Kichigin E.K., Safonov I.A., Mokh A.M.A.E. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2013, vol. 9, no. 6-1, pp. 51 - 55.

  62. Groshev A.V. Trudy MAI, 2019, no. 104. URL: http://trudymai.ru/eng/published.php?ID=102217

  63. Vereikin A.A. 10-i Vserossiiskii mezhotraslevoi molodezhnyi konkurs nauchno-tekhnicheskikh rabot i proektov “Molodezh' i budushchee aviatsii i kosmonavtiki”: annotatsii konkursnykh rabot, Moscow, Izd-vo MAI, 2018, pp. 36 - 38.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход