Temperature impact on the elasticity modulus of structural materials
DOI: 10.34759/trd-2020-115-02
Аuthors
*, **, **Komsomolsk-na-Amure State University, 27, Lenina str., Komsomolsk-on-Amur, 681013, Russia
*e-mail: wwwartem21@mail.ru
**e-mail: fks@knastu.ru
Abstract
Elasticity modulus of a material, to be more exact Young’s modulus, significantly affects the figures while any operation of the material. Thus, the attention to this indicator long since cases interest. It should be noted that a significant u of research has been conducted in this area. There are indicators of the Young’s modulus of all structural materials, as well as its indicators at various operating conditions, including those at various temperatures, e.g. above and below zero Centigrade. The presented study was conducted with the purpose of solving the problem of buildings and structures strength and stability under the temperature effect. To do this, the review of the well-known data in the Young’s modulus area was performed, and revealing the most advantageous materials for implementation with the purpose of buildings and structures strength enhancing.
Not a single branch of human activities can do without employing the elements in the form of closed and open thin-walled cylindrical shells. These are, for example: hangars, pipelines, missiles, submarines, boats, aircraft and other elements. There are quite a few elements in the form of open and closed shells in the form of machine parts and mechanisms. This form of structures has become widespread due to their higher efficiency compared to the others such as, rectangular structures and parts, since less material is spent on their manufacturing. Besides, it is is easier to manufacture such elements, for example, by rolling. Often these parts, such as aircraft engine nozzles, or aircraft skin, are affected thermally. This phenomenon creates many difficulties, since the exposure temperatures are often above 1000°C. The Young’s modulus herewith is being significantly reduced, the same relates to the strength as well.
Keywords:
Young's modulus, structural materials, composite materials, reinforced concreteReferences
-
Vlasov V.Z. Obshchaya teoriya obolochek i ee prilozhenie v tekhnike (General theory of shells and its application in technology), Moscow-Leningrad, Gostekhizdat, 1949, 784 p.
-
Kubenko V.D., Koval’chuk P.S., Krasnopol’skaya T.S. Nelineinoe vzaimodeistvie form izgibnykh kolebanii tsilindricheskikh obolochek (Nonlinear interaction of bending vibrations’ shapes of cylindrical shells), Kiev, Naukova dumka, 1984, 220 p.
-
Antuf’ev B.A. Kolebaniya neodnorodnykh tonkostennykh konstruktsii (Oscillations of inhomogeneous thin-walled structures), Moscow, Izd-vo MAI, 2011, 176 p.
-
Sysoev O.E., Dobryshkin A.Yu., Nein Sit Naing. Trudy MAI, 2018, no. 98. URL: http://trudymai.ru/eng/published.php?ID=90079
-
Z. Wang, Q. Han, D.H. Nash, P. Liu. Investigation on inconsistency of theoretical solution of thermal buckling critical temperature rise for cylindrical shell, Thin-Walled Structures, 2017, no. 119, pp. 438 – 446. DOI: 10.1016/j.tws.2017.07.002
-
Sysoev O.E., Dobrychkin A.Yu., Nyein Sitt Naing, Baenkhaev A.V. Investigation to the location influence of the unified mass on the formed vibrations of a thin containing extended shell, Materials Science Forum, 2019, vol. 945, pp. 885 – 892. DOI: 10.4028/www.scientific.net/MSF.945.885
-
Sysoev O.E., Dobrychkin A.Yu. Natural vibration of a thin desing with an added mass as the vibrations of a cylindrical shell and curved batten, Journal of Heilongjiang university of science and technology, 2018, vol. 28, no. 1, pp.75 – 78.
-
Sysoev O.E., Dobrychkin A.Yu., Nyein Sitt Naing. Nonlinear Oscillations of Elastic Curved plate carried to the associated masses system, IOP Conference Series: Materials Science and Engineering, 2017, vol. 262. DOI: 10.1088/1757-899X/262/1/012055
-
Y. Qu, Y. Chen, X. Long, H. Hua, and G. Meng. Free and forced vibration analysis of uniform and stepped circular cylindrical shells using a domain decomposition method, Applied Acoustics, 2013, vol. 74, no. 3, pp. 425 – 439.
-
Y. Qu, H. Hua, and G. Meng. A domain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries, Composite Structures, 2013, vol. 95, pp. 307 – 321.
-
Y. Xing, B. Liu, and T. Xu. Exact solutions for free vibration of circular cylindrical shells with classical boundary conditions, International Journal of Mechanical Sciences, 2013, vol. 75, pp. 178 – 188.
-
M. Chen, K. Xie, W. Jia, and K. Xu. Free and forced vibration of ring-stiffened conical–cylindrical shells with arbitrary boundary conditions, Ocean Engineering, 2015, vol. 108, pp. 241 – 256.
-
H. Li, M. Zhu, Z. Xu, Z. Wang, and B. Wen. The influence on modal parameters of thin cylindrical shell under bolt looseness boundary, Shock and Vibration, 2016. DOI: http://dx.doi.org/10.1155/2016/4709257
-
Foster N., Fernández–Galiano L. Norman Foster in the 21st Century, Monografías, Artes Gráficas Palermo, 2014, 328 p.
-
Eliseev V.V., Moskalets A.A., Oborin E.A. One-dimensional models in turbine blades dynamics, Lecture Notes in Mechanical Engineering, 2016, vol. 9, pp. 93 – 104.
-
Hautsch N., Okhrin O., Ristig A. Efficient iterative maximum likelihood estimation of highparameterized time series models, Berlin, Humboldt University, 2014, 34 p.
-
Belostochnyi G.N., Myl’tsina O.A. Trudy MAI, 2015, no. 82. URL: http://trudymai.ru/eng/published.php?ID=58524
-
Kuznetsova E.L., Tarlakovskii D.V., Fedotenkov G.V., Medvedskii A.L. Trudy MAI, 2013, no. 71. URL: http://trudymai.ru/eng/published.php?ID=46621
-
Demin A.A., Golubeva T.N., Demina A.S. The program complex for research of fluctuations’ ranges of plates and shells in magnetic field, 11th Students’ Science Conference «Future Information technology solutions», Bedlewo, 3-6 October 2013, pp. 61 – 66.
-
Nushtaev D.V., Zhavoronok S.I., Klyshnikov K.Yu., Ovcharenko E.A. Trudy MAI, 2015, no. 82. URL: http://trudymai.ru/eng/published.php?ID=58589
- Grushenkova E.D., Mogilevich L.I., Popov V.S., Popova A.A. Trudy MAI, 2019, no. 106. URL: http://trudymai.ru/eng/published.php?ID=105618
Download