Techniques for determining rational time for specialists training in automated training systems


DOI: 10.34759/trd-2020-115-11

Аuthors

Bagretsov S. A.*, Chernaya T. E., Karpenko K. A.**, Tarasov A. G.***

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: sergeibagrecov@bk.ru
**e-mail: kirill_karpenko_2@mail.ru
***e-mail: Atol-77@mail.ru

Abstract

It is necessary to combine theoretical and practical drill in the process of specialists training. However, the balance between these two types of training may differ drastically for various sphere of activities. The material of the article allows determine the rational learning time with known and unknown level of losses associated with operator errors. The proposed techniques allow predicting with fairly high degree of accuracy the required number of practical classes in special disciplines for this of that training period to increase the specialists’ level of training.

The proposed methods are based on the fundamental concepts and relationships of probability theory, utility theory, and fuzzy logic. The interval measure obtaining method is based on the concepts of a hypothetical game (pseudo-game). The interval boundary values usefulness is being coordinated based on the expert survey.

These methods allow determining the rational period of the training course studying by the student from the initial time instant, which ensures an optimal combination of the loss function indicators and costs in the sense of the minimax criterion. The obtained results can be used while the educational process planning to ensure the necessary level of students’ preparedness and minimize the learning process costs.

A rational combination of theoretical and practical stages of training allows prepare a specialist with professional knowledge, skills and abilities at a level guaranteeing the functional activities tasks fulfilling in any conditions of situation. The proposed scientific and methodological approach is advisable to be implemented while organizing the specialists training process when the necessary level of knowledge and skills is known for the correct functional duties performing with the required probability.

The proposed methods allow determining the specialists training period, which minimizes training the costs and the necessary level of a specialist training, which is defined as the probability of timely and error-free solution of problems related to his future professional activity. The technique allows accounting for specifics of the trainees’ further practical work, and defining criteria of the professional training levels and resource constraints on performing sales professionals training.

Keywords:

loss function, utility function, rational training time, statutory cost efficiency factor

References

  1. Kozlov V.N. Sistemnyi analiz, optimizatsiya i prinyatie reshenii (System analysis, optimization, and decision-making), Moscow, Izd-vo “Prospekt”, 2014, 176 p.

  2. Shevtsov G.S. Lineinaya algebra: teoriya i prikladnye aspekty (Linear algebra: theory and applied aspects), Moscow, Magistr, INFRA – M, 2014, 544 p.

  3. Bagretsov S.A., L’vov V.M., Petrov V.E. Metody i sredstva obespecheniya gomeostatichnosti individual’noi deyatel’nosti operatora v cheloveko-mashinnykh kompleksakh (Methods and means of homeostasis ensuring of operator’s individual activities in human-machine complexes), Saint Petersburg, ID “Petropolis”, 2012, 340 p.

  4. Nesterov Yu.G. Nauka i obrazovanie, 2014, no. 3, pp. 242 – 254.

  5. Nesterov Yu.G. Nauka i obrazovanie, 2014, no. 2, pp. 263 – 276.

  6. From ATM to IP/Ethernet: Three Strategies for Cost-Effective Network Convergence. White Paper. Tellabs, 2011. URL: https://ru.scribd.com/document/75157458/From-ATM-to-IP-Ethernet-Three-Strategies-for-Cost-Effective-Network-Convergence

  7. Rebrin O.I. Novye modeli inzhenernogo obrazovaniya (New models of engineering education), Ekaterinburg, Izdatel’skii dom “Azhur”, 2015, 77 p.

  8. Bannikova L.N., Boronina L.N., Vishnevskii Yu.R. Vosproizvodstvo inzhenernykh kadrov: vyzovy novogo vremeni (Reproduction of engineering personnel: challenges of new times), Ekaterinburg, Izd-vo Ural’skogo universiteta, 2015, 364 p.

  9. Crawley E. F., Malmqvist J., Östlund S. Rethinking Engineering Education. The CDIO Approach, 2014. DOI: 10.1007/978-3-319-05561-9

  10. Sigova S.V., Serebryakov A.G., Luksha P.O. Nepreryvnoe obrazovanie: XXI vek, 2013, vol. 1, no. 1, pp. 61 – 71.

  11. Vasil’eva Z.A., Filimonenko I.V. Vestnik Tikhookeanskogo gosudarstvennogo ekonomicheskogo universiteta, 2012, no. 4, pp. 46 – 56.

  12. Wu Zhao, Hui Ma. OECD Science, Technology and Industry Scoreboard 2015. Innovation for growth and society, American Journal of Industrial and Business Management, 2017, vol. 7, no. 12. URL: http://dx.doi.org/10.1787/sti_scoreboard-2015-en

  13. Taim-menedzhment: prostye sposoby upravleniya vremenem. URL: http://psyfactor.org/lib/time-management-2.htm

  14. Motienko A., Basov O., Dorozhko I., Tarasov A. Proactive Robotic Systems For Effective Rescuing Sufferers. GmbH: Springer-Verlag, Lecture Notes In Computer Science, 2016, pp. 172 – 180. DOI: 10.1007/978-3-319-43955-6_21

  15. Osipov N.A., Shavin A.S., Tarasov A.G. Trudy MAI, 2015, no. 83. URL: http://trudymai.ru/eng/published.php?ID=62255

  16. Osipov N.A., Shavin A.S., Tarasov A.G. Trudy MAI, 2017, no. 94. URL: http://trudymai.ru/eng/published.php?ID=81085

  17. Burlak E.A., Nabatchikov A.M. Trudy MAI, 2013, no. 68. URL: http://trudymai.ru/eng/published.php?ID=41725

  18. Tarasov A.G. Karpenko K.A. Vestnik Rossiiskogo Novogo universiteta. Seriya: Slozhnye sistemy, 2020, no. 1, pp. 121 – 128.

  19. Naumov A.V. Sai Kkhin Aung Tint. Trudy MAI, 2011, no. 42. URL: http://trudymai.ru/eng/published.php?ID=24321

  20. Panarin S.I. Trudy MAI, 2011, no. 44. URL: http://trudymai.ru/eng/published.php?ID=25191

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход