Refined low-parametric model of the terrestrial pole motion


Аuthors

Wai Y. S.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: waiyan2032015@gmail.com

Abstract

The terrestrial pole oscillations approximation refinement considered in the article allows approximation refining and propagating implementation of the small-parametric double-frequency model of the pole movement to the longer time intervals. Approximation accuracy improving while keeping the same number of the model parameters is of great significance. As far as it is impossible for the time being to predict the amplitudes relationship changing, as well as determine it in real time, the effect will always be detected behind the time, and it will fall on the approximation period for a considerable time, which will negatively affect prediction based on the basic model.

For the modified model, there is no need for the exact definition of the oscillation mode changing, and it is possible to be limited by the analysis of the resulting parameters of the pole modulation process without its subdivision into harmonics to solve the set problem. Establishing of the occurred changing of the average frequency over the harmonics modulation period with the delay to the extent, which is allowed by the ψ(t) function analysis is quite sufficient. For the modified model, there is no need for the exact definition of the oscillation mode changing, and it is possible to be limited by the analysis of the resulting parameters of the pole modulation process without its subdivision into harmonics to solve the set problem. Establishing of the occurred changing of the average frequency over the harmonics modulation period with the delay to the extent, which is allowed by the ψ(t) function analysis is quite sufficient.

Keywords:

terrestrial pole, Chandler wobble, Earth rotation parameters

References

  1. International Earth Rotation and Reference Systems Service. IERS Annual Reports. URL: http://www.iers.org

  2. Mank U., Makdonal'd G. Vrashchenie Zemli (Earth rotation), Moscow, Mir, 1964, 384 p.

  3. Akulenko L.D., Klimov D.M., Markov Yu.G., Perepelkin V.V. Izvestiya RAN. Mekhanika tverdogo tela, 2012, no. 6, pp. 6 - 29.

  4. Perepelkin V.V. Trudy MAI, 2007, no. 26. URL: http://trudymai.ru/eng/published.php?ID=34044

  5. Akulenko L.D., Klimov D.M., Kumakshev S.A. Doklady RAN, 2014, vol. 458, no. 5, pp. 547 - 550.

  6. Vu Viet Chung. Trudy MAI, 2013, no. 69. URL: http://trudymai.ru/eng/published.php?ID=43147

  7. Vu Viet Chung. Trudy MAI, 2013, no. 69. URL: http://trudymai.ru/eng/published.php?ID=43104

  8. Bizouard C., Remus F., Lambert S., Seoane L., and Gambis D. The Earth’s variable Chandler wobble, Astronomy and astrophysics, 2011, vol. 526 (13), DOI: 10.1051/0004-6361/201015894

  9. Zotov L., Bizouard C., Shum C.K. A possible interrelation between Earth rotation and climatic variability at decadal time-scale, Geodesy and Geodynamics, 2016, no. 7. DOI: 10.1016/j.geog.2016.05.005

  10. Sidorenkov N.S. Fizika nestabil'nostei vrashcheniya Zemli (Physics of the Earth rotation instabilities), Moscow, Nauka, 2002, 376 p.

  11. Schubert G. Treatise on Geophysics, 2007, Amsterdam, Elsevier. URL: https://search.rsl.ru/ru/record/01003376643

  12. Zhou Y.H., Salstein D.A, Chen J.L. Revised atmospheric excitation function series related to Earth’svariable rotation under consideration of surface topography, Journal of Geophysical Research, 2006, vol. 111, D12108. DOI: 10.1029/2005JD006608

  13. Zotov L., Bizouard C. On modulations of the Chandler wobble excitation, Journal of Geodynamics, 2012, no. 62, pp. 30 - 34. DOI: 10.1016/j.jog.2012.03.010

  14. Markov Yu.G., Perepelkin V.V., Krylov S.S. Doklady RAN, 2016, vol. 471, no. 6, pp. 665 - 670. DOI: 10.7868/S0869565216360111

  15. Barkin M.Yu., Krylov S.S., Perepelkin V.V. Modeling and analysis of the Earth pole motion with nonstationary perturbations, Journal of Physics: Conference Series, 2019, vol. 1301, issue 1. DOI: 10.1088/1742-6596/1301/1/012005

  16. Bondarenko V.V., Krylov S.S., Perepelkin V.V. The fluctuation perturbations in the model of the Chandler wobble, IOP Conference series: materials science and engineering, 2018, pp. 12 - 16. DOI: 10.1088/1757-899X/468/1/012016

  17. Klimov D.M., Akulenko L.D., Shmatkov A.M. Doklady RAN, 2015, vol. 464, no. 3, pp. 288 - 292. DOI: 10.7868/S0869565215270092

  18. Akulenko L.D., Perepelkin V.V. Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2019, no. 5, pp. 142 – 149. DOI: 10.1134/S0572329919050039

  19. Perepelkin V.V. Kosmonavtika i raketostroenie, 2019, no. 1 (106), pp. 24 - 30.

  20. Ananenkova A.A., Krylov S.S., Filippova A.S. Kosmonavtika i raketostroenie, 2018, no. 1 (100), pp. 150 – 156.


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход