On the polar tide impact on the Earth pole steady-state movenemt

DOI: 10.34759/trd-2021-116-16


Myo Z. A.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: myozawaung53@gmail.com


A small displacement of polar tide and a phase shift of coefficients of the tesseral harmonic of geopotential relative to the Earth pole oscillations is the result of the Earth mantle viscosity. This displacement is quite small, and insignificant for practical tasks, such as satellite navigation. However, it presents considerable interest for studying the Earth pole since it determines the steady-state mode of Chandler wobbles, as well as amplitude of the necessary external disturbance for Chandler wobble excitation of the Earth pole.

The expressions of the tesseral harmonic coefficients variations, stipulated by the polar tide of the viscoelastic Earth model, were obtained in this work by methods of nonlinear mechanics with infinite number of degrees of freedom. A viscoelastic solid body, consisting of the axisymmetric hard core and viscoelastic axisymmetric (in non-deformed state) shell, being subjected to deformation according to the Kelvin-Voigt model, is being considered as a simplified model of Earth. There are no displacements on the inner boundary of the shell, and the outer boundary one is free. It is supposed that the deformation process of the Earth can be assumed as quasi-stationary.

These expressions are being compared with the ones recommended for accounting by the International Earth Rotation Service. The steady-state oscillations mode of the Earth pole are being studied based on the Euler-liouville dynamic equations, with account for variations in geopotential coefficients due to the tidal deformations of the Earth mantle. The article demonstrates that the polar tide model selection significantly affects the parameters of the steady-state oscillatory process of the Earth pole and the amplitude of the necessary disturbance with the chandler frequency to excite the observed chandler oscillation of the pole.


Earth pole, Earth rotation parameters, geopotential


  1. International Earth Rotation and Reference Systems Service. IERS Annual Reports. URL: http://www.iers.org

  2. Mank U., Makdonal'd G. Vrashchenie Zemli (Rotation of the Earth), Moscow, Mir, 1964, 384 p.

  3. Akulenko L.D., Klimov D.M., Markov Yu.G., Perepelkin V.V. Izvestiya RAN. Mekhanika tverdogo tela, 2012, no. 6, pp. 6 - 29.

  4. Akulenko L.D., Perepelkin V.V. Izvestiya RAN. Mekhanika tverdogo tela, 2018, no. 6, pp. 4 - 12. DOI: 10.31857/S057232990002536-9

  5. Perepelkin V.V. Trudy MAI, 2007, no. 26. URL: http://trudymai.ru/eng/published.php?ID=34044

  6. Schubert G. Treatise on Geophysics, 2007, Amsterdam, Elsevier. URL: https://search.rsl.ru/ru/record/01003376643

  7. Hu X.-G., Liu L.-T., Ducarme B., Xu H.J., Sun H.P. Estimation of the pole tide gravimetric factor at the chandler period through wavelet filtering, Geophysical Journal International, 2007, vol. 169 (3), pp. 821 – 829. DOI: 10.1111/j.1365-246X.2007.03330.x

  8. Perepelkin V.V. Izvestiya RAN. Mekhanika tverdogo tela, 2019, no. 3, pp. 118 - 123. DOI: 10.1134/S0572329919030127

  9. Markov Yu.G., Minyaev I.S. Izvestiya RAN. Mekhanika tverdogo tela, 1991, no. 1, pp. 12 – 18.

  10. Skorobogatykh I.V., Do Chung Bo. Kosmonavtika i raketostroenie, 2015, no. 1 (80), pp. 106 – 113.

  11. Vil'ke V.G. Analiticheskie i kachestvennye metody mekhaniki sistem s beskonechnym chislom stepenei svobody (Analytical and qualitative methods of systems mechanics with infinite number of degrees of freedom), Moscow, Izd-vo MGU, 1986, 192 p.

  12. Akulenko L.D., Klimov D.M., Kumakshev S.A. Doklady RAN, 2014, vol. 458, no. 5, pp. 547 - 550.

  13. Akulenko L.D., Perepelkin V.V. Izvestiya RAN. Mekhanika tverdogo tela, 2019, no. 5, pp. 142 – 149. DOI: 10.1134/S0572329919050039

  14. Vu Viet Chung. Trudy MAI, 2013, no. 69. URL: http://trudymai.ru/eng/published.php?ID=43147

  15. Vu Viet Chung. Trudy MAI, 2013, no. 69. URL: http://trudymai.ru/eng/published.php?ID=43104

  16. Barkin M.Yu., Krylov S.S., Perepelkin V.V. Modeling and analysis of the Earth pole motion with nonstationary perturbations, Journal of Physics: Conference Series, 2019, vol. 1301, issue 1. DOI: 10.1088/1742-6596/1301/1/012005

  17. Bizouard C., Remus F., Lambert S., Seoane L., Gambis D. The Earth’s variable Chandler wobble, Astronomy and astrophysics, 2011, vol. 526 (13), DOI: 10.1051/0004-6361/201015894

  18. Zotov L., Bizouard C. On modulations of the Chandler wobble excitation, Journal of Geodynamics, 2012, no. 62, pp. 30 - 34. DOI: 10.1016/j.jog.2012.03.010

  19. Zotov L., Bizouard C., Shum C.K. A possible interrelation between Earth rotation and climatic variability at decadal time-scale, Geodesy and Geodynamics, 2016, no. 7. DOI: 10.1016/j.geog.2016.05.005

  20. Sidorenkov N.S. Fizika nestabil'nostei vrashcheniya Zemli (Physics of instability of the earth's rotation), Moscow, Nauka, 2002, 376 p.

  21. Zhou Y.H., Salstein D.A, Chen J.L. Revised atmospheric excitation function series related to Earth’svariable rotation under consideration of surface topography, Journal of Geophysical Research, 2006, vol. 111, D12108. DOI: 10.1029/2005JD006608

  22. Klimov D.M., Akulenko L.D., Shmatkov A.M. Doklady RAN, 2015, vol. 464, no. 3, pp. 288 - 292. DOI: 10.7868/S0869565215270092

  23. Markov Yu.G., Perepelkin V.V., Krylov S.S. Doklady RAN, 2016, vol. 471, no. 6, pp. 665 - 670. DOI: 10.7868/S0869565216360111

  24. Bondarenko V.V., Krylov S.S., Perepelkin V.V. The fluctuation perturbations in the model of the Chandler wobble, IOP Conference series: materials science and engineering, 2018, pp. 12 - 16. DOI: 10.1088/1757-899X/468/1/012016


mai.ru — informational site MAI

Copyright © 2000-2022 by MAI