Development of Complex Measurement Navigation System Algorithms of Aerial Application Based on Domestic Hardware Components


DOI: 10.34759/TRD-2021-117-09

Аuthors

Kornilov A. V.*, Korchagin K. S.**, Losev V. V.***

Company “Arzamas Research & Production Enterprise TEMP-AVIA”, 26, Kirov str., Arzamas, Nizhny Novgorod Region, 607220, Russia

*e-mail: kornilov_a@inbox.ru
**e-mail: boneasd@mail.ru
***e-mail: tempavia@bk.ru

Abstract

The article is devoted to the development of new methods and improvement of existing methods as well as analysis means of data processing in aircraft navigational systems. Particularly, are present an analysis of results of theoretical and applied data processing method development and research as a part of Comprehensive Measurement Navigation System are considered in the article.

The concept of the system is developed: taking into consideration application specifics, available limitations and level of accuracy and functionality requirements, hardware component is realized completely on electro- and radio-articles of Russian production. As raw data sensors the following sensors are used: inertial sensors (compensating silicon accelerometer, solid state wave gyroscopes), pressure transducers (static pressure transducer, total pressure transducer), navigation satellite system receiver and analogue magnetometer.

The system structure synthesis is performed, main data communications between data sources are determined in terms of available constraints and level of accuracy and functionality requirements for Comprehensive Measurement Navigation System. Possible data interconnection is conducted; as a result, methods and algorithms are established for quality improvement by means of measurement error reduction of flight and navigation parameters:

– autonomous compensation algorithm of gyroscope error;

– method of data fusion from inertial and barometric sensor;

– method of data fusion from inertial sensors and satellite navigation system.

The results of abovementioned method researches are performed using mathematical and semi-realistic simulation, as well as by ground tryout of the Comprehensive Measurement Navigation System test item.

Research data showed that developed solutions and methods of data processing allow to produce measurement navigation system of aerial application with required specifications based on Russian hardware components.

Keywords:

satellite navigation, inertial navigation, data fusion, Kalman filter, inertial-satellite mode, baro-inertial mode, hemispherical resonator gyroscope

References

  1. GOST 22851-77. Vybor nomenklatury pokazatelei kachestva promyshlennoi produktsii (Selection of the nomenclature of industrial product quality indicators), Moscow, Gosudarstvennyi komitet standartov, 1977, 10 p.

  2. Matveev V.V., Raspopov V.Ya. Osnovy postroeniya besplatformennykh inertsial'nykh navigatsionnykh system (Fundamentals of building strapdown inertial navigation systems), Saint Petersburg, TsNII «Elektropribor», 2009, 280 p.

  3. Efimov I.P. Aviatsionnye pribory (Aviation instruments), Ul'yanovsk, UlGTU, 2018, 255 p.

  4. Dyatlov D.V., Ryabkov P.V., Sidorchuk V.P. Vestnik Yaroslavskogo gosudarstvennogo universiteta im. P.G. Demidova. Seriya: Estestvennye i tekhnicheskie nauki, 2014, no. 4, pp. 37 - 44.

  5. Sukhomlinov D.V., Medved' A.N. Dvigatel', 2014, no. 5 (95), pp. 38 – 41.

  6. Groshev A.V. Trudy MAI, 2019, no. 104. URL: http://trudymai.ru/eng/published.php?ID=102217

  7. GOST R ISO 5725-1-2002: Tochnost' metodov i rezul'tatov izmerenii (Accuracy of measurement methods and results), Moscow, Standartinform, 2009. URL: http://docs.cntd.ru/document/1200029975

  8. Preobrazovatel' davleniya i temperatury kvartsevyi. URL: http://sktbelpa.ru/produktsiya-ru/preobrazovateli-absolyutnogo-davleniya.html

  9. Navigatsionnyi priemnik MNP-M7. URL: https://www.irz.ru/products/12/index.htm

  10. K1921VK01T mikrokontroller Korteks-2015 ARM 32 bit. URL: https://niiet.ru/product/354-arm-cortex

  11. Seriinye i perspektivnye IMS dlya interfeisa Ethernet. URL: https://www.milandr.ru/upload/iblock/bad/bad5937a92675565aaaf2d97dc47d2a8.pdf

  12. Matasov A.I., Tikhomirov V.V. Trudy MAI, 2016, no. 89. URL: http://trudymai.ru/eng/published.php?ID=73321

  13. Shcherbinin V.V., Kvetkin G.A., Izmailov-Perkin A.V., Azhgirevich I.L. Izvestiya TulGU. Tekhnicheskie nauki, 2018, no. 3, pp. 3 – 11.

  14. Dolgii O.V., Zhikh A.I., Grishchenko V.A. Nauchnye gorizonty, 2019, no. 4 (20), pp. 193 – 198.

  15. Kuzovkov N.T., Salychev O.S. Inertsial'naya navigatsiya i optimal'naya fil'tratsiya (Inertial navigation and optimal filtering), Moscow, Mashinostroenie, 1982, 216 p.

  16. Vovasov V.E., Betanov V.V., Turlykov P.Yu. Trudy MAI, 2017, no. 96, URL: http://trudymai.ru/eng/published.php?ID=85834

  17. Chernodarov A.V., Ivanov S.A. Trudy MAI, 2018, no. 99. URL: http://trudymai.ru/eng/published.php?ID=91962

  18. Il'yasov S.P., Kornilov A.V., Losev V.V. Trudy MAI, 2017, no. 92. URL: http://trudymai.ru/eng/published.php?ID=77119

  19. Kornilov A.V., Losev V.V. Vestnik Volzhskoi gosudarstvennoi akademii vodnogo transporta, 2017, no. 52, pp. 31 - 49.

  20. Uglomernaya apparatura MRK-32. URL: http://xn--g1afsi.xn--p1ai/nav_mrc-32.html


Download

mai.ru — informational site MAI

Copyright © 2000-2022 by MAI

Вход