Technology modification for distance calculation between pairs of adjacent clusters in multilevel thresholding


DOI: 10.34759/trd-2021-118-13

Аuthors

Khanykov I. G.

Saint Petersburg State University of Aerospace Instrumentation, 67, Bolshaya Morskaya str., Saint Petersburg, 190000, Russia

e-mail: igorioniak@mail.ru

Abstract

The article considers the multi-threshold images processing technology, which consists in generating a series of partitions into clusters for the original grayscale image. Each image is being assigned to its own brightness histogram, which every column is a separate cluster of pixels. A cluster is being characterized by the number of pixels it contains and the average brightness value. All pairs of adjacent clusters are being browsed while traversing over the brightness histogram. The pair of clusters with the minimum distance between them is being selected for merging at the end of the histogram traversing. In general case, 256 partitions are available by the number of the gray levels. In a special case, when the image consists of K grey levels (K < 256), and there is a need to find a partition from t levels of grey, the necessity to generate K — t partition into clusters will arise. With the original version of the multi-threshold processing method, the distance between the pairs of adjacent clusters was computed through the product of the intra-class and interclass dispersions, which requires considering the brightness histogram as a function of the probability density. The original technique is full of complex design equations. The modification proposed in the presented work allows computing the distance between the pairs of adjacent clusters by the increment of the total quadratic error. This modification is justified by a number of reasons. Firstly, the number of computational operations reduces twofold. Secondly, the accumulated value of the total quadratic error, expressed through the mean-square deviation, serves as the quality indicator of the image partitioning to clusters. Thirdly, the set of the total quadratic errors, characterizing the series of partitions into clusters, forms optimal sequence of partitions as evidenced by the convex curve.

Keywords:

multilevel thresholding, standard deviation, piecewise-constant partition, grayscale image, pixel clusters

References

  1. Tajbakhsh N. et al. Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation, Medical Image Analysis, 2020, pp. 101693. URL: https://arxiv.org/pdf/1908.10454.pdf

  2. Stathopoulou E.K., Remondino F. Semantic photogrammetry: boosting image-based 3D reconstruction with semantic labeling, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, vol. 42, no. 2, pp. 1 — 7. DOI:10.5194/isprs-archives-XLII-2-W9-685-2019

  3. Hossain M.D., Chen D. Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective, Journal of Photogrammetry and Remote Sensing, 2019, no. 150, pp. 115 — 134. DOI: 10.1016/j.isprsjprs.2019.02.009

  4. Khanykov I.G., Tolstoj I.M., Levonevskiy D.K. The classification of the image segmentation algorithms, International Journal of Intelligent Unmanned Systems, 2020, vol. 8, no. 2, pp. 115 — 127. DOI: 10.1108/IJIUS-07-2019-0031

  5. Agus Zaina Arifin, Akira Asosno. Image segmentation by histogram thresholding using hierarchical cluster analysis, Pattern Recognition Letters, 2006, no. 27 (13), pp. 1515 — 1521. DOI: 10.1016/j.patrec.2006.02.022

  6. Sobel I., Feldman G. A 3×3 Isotropic Gradient Operator for Image Processing, A Talk at the Stanford Artificial Project, 1968, pp. 271 — 272.

  7. Vatutin E.I., Miroshnichenko S.Yu., Titov V.S. Telekommunikatsii, 2006, no. 6, pp. 12 — 16.

  8. Scharr H. Optimale Operatoren in der Digitalen Bildverarbeitung: Dissertation. 2000, URL: https://doi.org/10.11588/heidok.00000962

  9. Jähne B., Scharr H., Körkel S. Principles of filter design. In Handbook of Computer Vision and Applications, Academic Press, 1999.

  10. Roberts L. Machine Perception of 3-D Solids, Optical and Electro-optical Information Processing, MIT Press, New York, 1965.

  11. Samuel J. Dwyer III. A personalized view of the history of PACS in the USA. In: Proceedings of the SPIE, Medical Imaging 2000: PACS Design and Evaluation: Engineering and Clinical Issues, 2000. URL: https://doi.org/10.1117/12.386388

  12. Canny J. A computational approach to edge detection, IEEE Transactions on pattern analysis and machine intelligence, 1986, no. 6, pp. 679 — 698. DOI: 10.1109/TPAMI.1986.4767851

  13. Nixon M.S., Aguado A.S. Feature Extraction and Image Processing, Academic Press, 2008, 424 p.

  14. Maslov A.M., Sergeev V.V. Komp’yuternaya optika, 1990, no. 6, pp. 97 — 102.

  15. Otsu N. A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man and Cybernetics, 1979, vol. 9, no. 1, pp. 62 — 66.

  16. Ping-Sung Liao, Tse-Sheng Chen, Pau-Choo Chung. A Fast Algorithm for Multilevel Thresholding, Journal of Information Science and Engineering, 2001, vol. 17 (5), pp. 713 — 727.

  17. Trusfus M.V., Abdullin I.N. Trudy MAI, 2021, no. 116. URL: http://trudymai.ru/eng/published.php?ID=121099. DOI: 10.34759/TRD-2021-116-13

  18. Korneev M.A., Maksimov A.N., Maksimov N.A. Trudy MAI, 2012, no. 58. URL: http://trudymai.ru/eng/published.php?ID=33061

  19. Lunev E.M., Pavlova N.V. Aerospace MAI Journal, 2009, vol. 16, no. 6, pp. 111 — 119.

  20. Buraga A.V., Kostyukov V.M. Trudy MAI, 2012, no. 53. URL: http://trudymai.ru/eng/published.php?ID=29624

  21. Khanykov I.G., Kharinov M.V., Patel C. Image Segmentation Improvement by Reversible Segment Merging, International Conference on Soft Computing and its Engineering Applications (icSoftComp), 2017, Changa, Anand, India. DOI: 10.1109/ICSOFTCOMP.2017.8280096

  22. Kharinov M.V., Khanykov I.G. Trudy SPIIRAN, 2015, vol. 3, no. 40, pp. 183 — 202.


    Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход