Improving the information content of the system for detecting contamination of elements of rocket and space technology


DOI: 10.34759/trd-2021-118-18

Аuthors

Lebedev A. S.1*, Dobrolyubov A. N.1*, Bezrukov A. V.2, Yarigin D. M.2

1. Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia
2. Baltic State Technical University “VOENMEH ” named after D.F. Ustinov, 1, 1st Krasnoarmeyskaya str., Saint Petersburg, 190005, Russia

*e-mail: vka@mil.ru

Abstract

The subject of the study is the methods of quality control of elements of rocket and space technology in production and operation. The aim of the work is to separate surfaces with various impurities (defects) due to an expanded dictionary of features based on second-order statistics (combination matrices).

The method of identification (recognition) of various damage to the surfaces of elements of rocket and space technology is considered.

The initial data for generating signs of damage discrimination is a two-dimensional array of intensities of electromagnetic waves reflected from these surfaces in the optical range. The reflection of light from the studied surfaces is recorded by the digital camera’s CCD-matrix when they are irradiated with a single-mode laser module S-5 (Sanyo) of the visible (red) range with a continuous radiation power of 5 MW in the spectral range of 635 nm, which is the optimal source of coherent radiation for building control and automation systems, alignment and marking devices, as well as for scientific purposes.

The generation of a dictionary of surface recognition features is based on nonlinear transformations of the resulting images (textures). To do this, the two-dimensional array is transformed into a second-order statistic ‒ the spatial dependence matrix (the matrix of combinations) .

The description of class recognition in the language of newly generated features made it possible to eliminate areas of ambiguous solution when identifying surfaces that were present in the previously developed method based on the feature space (mathematical expectation, variance, skewness and kurtosis coefficients) formed on the basis of first-order statistics (histograms of the intensity distribution of reflected signals). Thus, it is possible to separate the contamination (damage) of the surface of the studied elements from each other, eliminating the previously existing uncertainty.

The proposed methodology can be used to form expert opinions that exclude the «human factor» when assessing the condition of the studied surfaces of rocket and space technology elements at various stages of their manufacture and operation (at the manufacturing plant ‒ during production and in operating organizations during repair and maintenance work).

Keywords:

quality control, class separation, pattern recognition, feature dictionary, intensity matrix, combination matrix, reflected signal intensity

References

  1. Lebedev A.S., Dobrolyubov A.N., Mihajlenko A.V., Bezrukov A.V. Trudy MAI, 2020, no. 112. URL: http://trudymai.ru/eng/published.php?ID=116578. DOI: 10.34759/trd-2020-112-018

  2. Deniskin Yu.I., Dubrovin A.V., Podkolzin V.G. Trudy MAI, 2017, no. 95. URL: http://trudymai.ru/eng/published.php?ID=84603

  3. Shevtsov S.N., Sibirskii V.V., Chigrinets E.G. Trudy MAI, 2016, no. 91. URL: http://trudymai.ru/eng/published.php?ID=75572

  4. Geoff Vorley, Fred Tickle. Quality Management Principles & Practice, Section 9 — Computer Aided Quality, Quality Management & Training (Publications), Ltd, 5th edition, UK, 2002, 335 p.

  5. Pavlov P.V., Goryunov A.E. Trudy MAI, 2015, no. 80. URL: http://trudymai.ru/eng/published.php?ID=57019

  6. Halász L. Control Methods in Polymer Processing, Studies in Polymer Science, 2012, vol. 10, 486 p.

  7. GOST 18353-79. Kontrol’ nerazrushayushchii. Klassifikatsiya vidov i metodov (State Standard 18353-79. Non-destructive control. Classification of species and methods), Moscow, Izd-vo standartov, 1980, 12 p.

  8. GOST 23479-79. Kontrol’ nerazrushayushchii. Metody opticheskogo vida. Obshchie trebovaniya (State Standard 23479-79. Non-destructive control. Methods of the optical type. General requirements), Moscow, Izd-vo standartov, 1980, 13 p.

  9. Chigrinets E.G., Verchenko A.V. Trudy MAI, 2019, no. 104. URL: http://trudymai.ru/eng/published.php?ID=102420

  10. Potapov A.S. Avtomaticheskii analiz izobrazhenii i raspoznavanie obrazov (Automatic image analysis and pattern recognition), Moscow, LAP Lambert Academic Publishing, 2017, 292 p.

  11. Gorelik A.L., Skripkin V.A. Metody raspoznavaniya (Methods of recognition), Moscow, Vysshaya shkola, 1984, 208 p.

  12. Tu Dzh., Gonsales R. Printsipy raspoznavaniya obrazov (Principles of pattern recognition), Moscow, Mir, 1978, 411 p.

  13. Vorob’ev S.N. Tsifrovaya obrabotka signalov (Digital processing of signals), Moscow, Izdatel’skii tsentr «Akademiya», 2013, 213 p.

  14. Fomin Ya.A. Raspoznavaniya obrazov: teoriya i primenenie (Pattern recognition: theory and application), Moscow, Fazis, 2014, 670 p.

  15. Merkov A.B. Raspoznavanie obrazov. Postroenie i obuchenie veroyatnostnykh modelei (Pattern recognition. Building and training of probabilistic models), Moscow, Lenand, 2014, 240 p.

  16. Tikhonov V.I. Statisticheskaya radiotekhnika (Statistical radio engineering), Moscow, Izd-vo Media, 2012, 678 p.

  17. Tabarin G.T. Metody matematicheskoi fiziki (Methods of mathematical physics), Moscow, Izd-vo ACB, 2009, 208 p.

  18. Mazurov V.D. Matematicheskie metody raspoznavaniya obrazov (Mathematical methods of pattern recognition), Sverdlovsk, Izd-vo UrGU, 2010, 101 p.

  19. Sutyrin A.A. Trudy MAI, 2012, no. 51. URL: http://trudymai.ru/eng/published.php?ID=29228

  20. OST 92-1152-2014. Podgotovka poverkhnosti detalei pod svarku i paiku i obrabotka sborochnykh edinits posle svarki i paiki. Osnovnye trebovaniya (Industry Standard T 92-1152-2014. of Parts surfaces preparation for welding and soldering, and assemblies processing after welding and soldering. Basic requirements), Moscow, Kompozit, 2014, 35 p.

  21. Mikhaylenko A.V. Lebedev E.L., Lebedev A.S. Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli, 2018, vol. 10, no. 2, pp. 4 — 12.

  22. Mitra Sanjit K. Digital Signal Processing: A Computer-Based Approach, Mcgraw Hill, 1997, 864 p.

  23. Lebedev A.S., Dobrolyubov A.N., Lebedev E.L., Bezrukov A.V. Sovremennye naukoemkie tekhnologii, 2017, no. 2, pp. 36 — 40.


    Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход