Quality control of the spacecraft onboard equipment functioning under the impact of the propulsion system radiation


DOI: 10.34759/trd-2021-118-20

Аuthors

Dement`ev A. N.*, Bannikov A. V.**, Arsen`ev K. V.***, Shiryaev A. A.****, Basak A. A.*****

NPO “Technomash”, 40, 3rd proezd Mar’inoi Roshchi, Moscow, 127018, Russia

*e-mail: dementev_2001@mail.ru
**e-mail: anthor157@ya.ru
***e-mail: K.Arsenev@tmnpo.ru
****e-mail: shiryaevAA@tsniimash.ru
*****e-mail: feder89@yandex.ru

Abstract

One of the concepts for the prospective space systems development consists at present in the spacecraft energy capacity enhancement through the space purpose neuclear reacotrs application.

The article presents computational models that allow radiation conditions determining created by nuclear reactors of advanced spacecraft (AS) in the locations of onboard equipment (OE). In addition to the ionizing radiation (IR) impact from the outer space (OS), the radio-electronic OE is exposed to the penetrating radiation of a nuclear reactor. The article shows that along with a number of operational characteristics increasing, nuclear reactors application as power systems involves stricter requirements for radiation resistance. The results of the absorbed doses’ modeling and calculation for the of the payload insertion vehicle model containing reactor are presented.

Presently, in the context of modernization and the transition to an innovative path of development, space nuclear energetics become up-to-date again. The «Roskosmos» State Corpoation together with the «Rosatom» State Corporation propose developing a project of a spacecraft equipped with a nuclear rocket engine of a more than megawatt capacity for flights to the Moon and Mars 1.

The current requirements for the spacecraft consist in the active life increasing by the amount from10 to 15 years, which entails an increase in the requirements for ensuring the OE radiation resistance.

Among the numerous factors affecting the OE functioning, the IR CP impact may be distinguished due to the fact that both dose (DE) and single (SE) effects caused by the IR CP account for up to 50% of all OE SC failures.

Besides, the OE of a spacecraft with the onboard reactor should function normally in a stationary mixed field of gamma and neutron radiation, which characteristics’ values, as well as the ratio between the gamma and neutron components of the radiation field depend on the thermal power of the reactor, location of the equipment on the spacecraft relative to the reactor, the type and characteristics of the protection used, the reactor operation duration, as well as the presence of the residual gamma background of the reactor in the off state.

In this regard, when spacecraft systems designing, it is necessary to conduct studies on assessing the IR impact of various energies on the OE elements to ensure the required levels of radiation resistance.

The presented models account for the difference between the neutron and photon radiation interaction. The thechniqye for determining the neutron radiation propagation function in the form of the neutron radiation flux density in the the spacecraft structure materials depends greatly on the energy range, which affects significantly the physical processes of interaction. Besides, when neutrons propagate through the spacecraft structural elements, secondary gamma radiation occurs as a result of inelastic scattering and neutron capture. The quantitative characteristics of secondary gamma radiation depend on the type of material, its thickness, and the energy distribution of neutrons.

In the region of photon energies from twenty kiloelectronvolt to ten megaelectronvolt, to which the photons generated by the spacecraft nuclear reactor are being related, the main primary processes of gamma radiation interaction with the spacecraft structure materials are the photoelectric effect and Compton scattering of gamma quanta.

The article cosnsidered computational models, which allow determining the radiation conditions, created by the neuclear reactors of the advanced spacecreaft in the OE locations.

The authors show that the radioelectronic OE is being exposed to the penetrating radiation of a nuclear reactor in addition to the impact of the IR OS, and that along with the increase in a number of operational characteristics, the of nuclear reactors application as energy systems involves stricter requirements for radiation resistance. The models presented in the article allow the specific absorbed doses computing and, with account for the propagation function of the corresponding components of gamma-neutron radiation, determine the absorbed doses at a given point.

The article presents the results of absorbed doses modeling and calculation for a model of a payload insertion vehicle containing a nuclear reactor. It should be noted that the proposed model of the gamma-neutron radiation inpact from the reactor on the spacecraft OE elements is of an applied engineering nature and has no fundamental limitations on the linear dimensions of individual devices and structures when calculating the passage of the AI through the spacecraft elements, which allows it to be employed for calculating local dose radiation loads as well.

Keywords:

onboard equipment, quality control, ionizing radiation, nuclear reactor, radiation, payload insertion vehicle

References

  1. Golyakov A.D., Richnyak A.M. Trudy MAI, 2021, no. 117. URL: http://trudymai.ru/eng/published.php?ID=156328. DOI: 10.34759/trd-2021-117-20

  2. Borodin V.V., Petrakov A.M., Shevtsov V.A. Trudy MAI, 2015, no. 81. URL: http://trudymai.ru/eng/published.php?ID=57894.

  3. Dement’ev A.N. Fizika volnovykh protsessov i radiotekhnicheskie sistemy, 2018, vol. 2, no. 4, pp. 26 — 36.

  4. Dement’ev A.N., Aralkin M.V., Osipov O.V. Fizika volnovykh protsessov i radiotekhnicheskie sistemy, 2020, vol. 23, no. 3, pp. 44 — 55. DOI: 10.18469/1810-3189.2020.23.3.44-55

  5. Dement’ev A.N., Klyuev D.S., Sokolova Yu.V., Osipov O.V., Soldatov A.A. Pribory SVCh i opticheskogo diapazona (Microwave and optical range devices), Samara, Povolzhskii gosudarstvennyi universitet telekommunikatsii i informatiki, 2018, 220 p.

  6. Polyakov A.A., Zashchirinskii S.A. Trudy MAI, 2019, no. 107. URL: http://trudymai.ru/eng/published.php?ID=107877

  7. Sel’vesyuk N.I., Veselov Yu.G., Gaidenkov A.V., Ostrovskii A.S. Trudy MAI, 2018, № 103. URL: http://trudymai.ru/eng/published.php?ID=100782

  8. Chumakov A.I. Deistvie kosmicheskoi radiatsii na integral’nye skhemy (Space radiation impact on integrated circuits), Moscow, Radio i svyaz’, 2004, 319 p.

  9. Kasaev K.S., Akishin F.I., Bashkirov V.F., Grafodatskii O.S., Kuznetsov N.V., Makal’tsev A.A., Mileev V.N., Novikov L.S., Nymmik R.A., Panasyuk M.I. et al. Vozdeistvie kosmicheskoi sredy na materialy i oborudovanie kosmicheskikh apparatov (Space environment impact on spacecraft materials and equipment), Moscow, ENTsITEKh, 2000, vol. 16, 285 p.

  10. Myrova L.O., Chepizhenko A.Z. Obespechenie stoikosti apparatury svyazi k ioniziruyushchim i elektromagnitnym izlucheniyam (Ensuring ionizing and electromagnetic radiation resistance of communication equipment), Moscow, Radio i svyaz’, 1988, 296 p.

  11. Khudyakov A.S. Kosmicheskie energoustanovki (Space power plants), Moscow, Znanie, 1984, 64 p.

  12. Vlasov N.A. Neitrony (Neutrons), Moscow, Gostekhizdat, 1955, 427 p.

  13. Alekseevskii O.B. Atomnaya energiya, 1988, vol. 65, no. 3, pp. 214 — 217.

  14. Maslov V.V. Elektrichestvo, 1985, no. 2, pp. 37 — 42.

  15. Mashkovich V.P., Kudryavtseva A.V. Zashchita ot ioniziruyushchikh izluchenii: Spravochnik (Ionizing radiation protection), Moscow, Energoatomizdat, 1995, 496 p.

  16. Storm E., Israel’ X. Secheniya vzaimodeistviya gamma-izlucheniya (dlya energii 0,001–100 MeV i elementov s 1 po 100): Spravochnik (Cross-sections of gamma radiation interaction (for energies of 0.001-100 megaelectronvolt and elements from 1 to 100)), Moscow, Atomizdat, 1973, 253 p.

  17. Perevezentsev V.V. Osnovy inzhenernykh metodov raschetov zashchity ot ioniziruyushchikh izluchenii yadernykh energeticheskikh ustanovok (Fundamentals of engineering methods of protection computation from ionizing radiation of nuclear power plants computing), Moscow, Izd-vo MGTU, 1994, 68 p.

  18. Kiryushin A.I., Shlokin E.A. Inzhenernye metody rascheta i proektirovaniya biologicheskoi zashchity atomnykh paroproizvodyashchikh ustanovok (Engineering computation and design methods of nuclear steam generating plants biological protection), Gor’kii, GPI im. A.A. Zhdanova, 1979, 56 p.

  19. Dyatlov D.V., Ryabkov P.V., Sidorchuk V.P. Vestnik Yaroslavskogo gosudarstvennogo universiteta im. P.G. Demidova. Seriya: Estestvennye i tekhnicheskie nauki, 2014, no. 4, pp. 37 — 44.

  20. Morozov D.V., Chermoshentsev S.F. Nadezhnost’, 2019, vol. 19, no. 1, pp. 30 — 35. URL: https://doi.org/10.21683/1729-2646-2019-19-1-30-35.

  21. Getsov P., Nachev St., Bo V., Zafirov D. Issledovanie Zemli iz kosmosa, 2019, no. 1, pp. 84 — 91. DOI: 10.31857/S0205-96142019184-91

  22. Vasil’chenko A.S. Vozdushno-kosmicheskie sily. Teoriya i praktika, 2020, no. 13, pp. 89 — 98.

  23. Panovskiy V.N., Panteleev A.V. Meta-heuristic interval methods of search of optimal in average control of nonlinear determinate systems with incomplete information about its parameters, Journal of Computer and System Sciences International, 2017, no. 56 (1), pp. 52 — 63. URL: https://doi.org/10.1134/s1064230717010117

  24. Luus R. Iterative dynamic programming. Chapman and Hall/CRC, Boca Raton, USA, 2000, 344 p.

  25. Panteleev A.V., Pis’mennaya V.A. Application of a memetic algorithm for the optimal control of bunches of trajectories of nonlinear deterministic systems with incomplete feedback, Journal of Computer and System Sciences International, 2018, no. 57 (1), pp. 25 — 36. URL: https://doi.org/10.1134/s1064230718010082

  26. Beheshti Z., Shamsuddin S.M.H. A review of population-based meta-heuristic algorithms, International Journal of Advances in Soft Computing and its Applications, 2013, no. 5 (1), pp. 1 — 35.

  27. Brownlee J. Clever Algorithms: Nature-Inspired Programming Recipes, LuLu, Morrrisvill, USA, 2011, 423 p.

  28. Karane M.M.S. Comparative analysis of multi-agent methods for constrained global optimization, IV international conference on information technologies in engineering education, Moscow, Russia, 23–26 October 2018, pp. 128 — 133. DOI: 10.1109/INFORINO.2018.8581711

  29. Bakhvalov I.S., Zhidkov N.N., Kobel’kov G.M. Chislennye metody (Numerical methods), Moscow, BINOM. Laboratoriya znanii, 2001, 636 p.


    Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход