Rational analyzing function for precise feature extraction from an electrostatic signal


DOI: 10.34759/trd-2021-119-14

Аuthors

Scriabin Y. M.*, Potechin D. S.**

MIREA — Russian Technological University (Lomonosov Institute of Fine Chemical Technologies), 78, Vernadsky prospect, Moscow, 119454, Russia

*e-mail: meh-record@yandex.ru
**e-mail: msyst@msyst.ru

Abstract

The article is devoted to the problem of extracting features from an electrostatic signal. This problem becomes relevant when using an electrostatic monitoring system to detect unmanned aerial vehicles. The law of variation of the electrostatic field tenseness at a particular point on the earth’s surface depends on the landscape. In addition, the process of determining the parameters of the UAV flight requires the precise of determining the signs of an electrostatic signal.

In the works of other researchers, the wavelet transform based on the Morlet function is usually used to extract the features of an electrostatic signal. The exact definition of the features is carried out from the analysis of the resulting three-dimensional time-frequency distribution.

In this paper, we consider another type of transformation of an electrostatic signal based on convolution with a complex rational function. We select a function that can provide a simpler time-frequency distribution. The simplicity of this distribution lies in the fact that the parameters of the electrostatic signal are extracted based on determining the intersection point of two two-dimensional functions, instead of determining the peak on the three-dimensional distribution in the case of the wavelet transform.

The method under consideration has comparable noise immunity compared to the wavelet transform, in addition, it allows you to adapt the transformation to a specific electrostatic signal.

Keywords:

UAVs detection, electrostatic monitoring technology, electrostatic signal, time-frequency representations

References

  1. Ananenkov A.E., Marin D.V., Nuzhdin V.M., Rastorguev V.V. Trudy MAI, 2016, no. 91. URL: http://trudymai.ru/eng/published.php?ID=75662

  2. Skryabin Yu.M., Potekhin D.S. Trudy MAI, 2019, no. 106. URL: http://trudymai.ru/eng/published.php?ID=105747
  3. Zakota A.A., Efanov V.V., Gun’kina A.S. Trudy MAI, 2020, no. 115. URL: http://trudymai.ru/eng/published.php?ID=119951. DOI: 10.34759/trd-2020-112-15.
  4. Efanov V.V., Zakota A.A., Gun’kina A.S. Trudy MAI, 2021, no. 117. URL: http://trudymai.ru/eng/published.php?ID=156321. DOI: 10.34759/trd-2021-117-18.
  5. Zhenhua Wen., Junxing Hoa S.U. Jason Atkin A review of electrostatic monitoring technology: The state of the art and future research directions, Progress in Aerospace Sciences, 2017, vol. 2, issue 1, pp. 1 −11. DOI:10.1016/j.paerosci.2017.07.003
  6. Harvey T.J., Wood R.J.K., Powrie H.E.G. Electrostatic wear monitoring of rolling element bearings, Wear: An International Journal on the Science and Technology of Friction, Lubrication and Wear, 2007, vol. 263, pp. 1492 — 1501. DOI: 10.1016/j.wear.2006.12.073
  7. Zhang W., Yan Y., Yang Y. & Wang. J. Measurement of flow characteristics in a bubbling fluidized bed using electrostatic sensor arrays, IEEE Transactions on Instrumentation and Measurement, 2016, no. 65, pp. 703 — 712.
  8. Addabbo T., Fort A., Mugnaini M., Panzardi E., Vignoli V. Measurement System Based on Electrostatic Sensors to Detect Moving Charged Debris With Planar-Isotropic Accuracy, IEEE Transactions on Instrumentation and Measurement, 2019, vol. 68, issue 3. DOI:10.1109/TIM.2018.2853938
  9. Lastovetskii A.E., Klepka S.P., Ryabokon’ M.S. Vestnik Kontserna VKO Almaz-Antei, 2015, no. 3, pp. 59 — 69.
  10. Yan Y., Hu Y., Wang L. et al. Electrostatic sensors —Their principles and applications, Measurement, 2021, vol. 169. DOI:10.1016/j.measurement.2020.108506
  11. Chang C.S., Jin J., Kumar S., Su Q., Hoshino T., Hanai M. et al., Denoising of partial discharge signals in wavelet packets domain, IEE Proceedings — Science Measurement and Technology, 2005, no. 152 (3), pp. 129 — 140. DOI:10.1049/ip-smt:20041315
  12. Sucic N., Boashash B. An approach for selecting a real-life signal best-performing time-frequency distribution, 7th International Symposium on Signal Processing and Its Applications, Seventh International Symposium on Signal Processing and Its Applications, Proceedings, 2003, vol. 1, pp. 125 — 128. DOI:10.1109/ISSPA.2003.1224656
  13. Iatsenko D., McClintock P., Stefanovska A. Linear and synchrosqueezed time—frequency representations revisited: Overview, standards of use, resolution, reconstruction, concentration, and algorithms, Digital Signal Processing, 2015, vol. 42, pp. 1 — 26. DOI:10.1016/j.dsp.2015.03.004
  14. Sejdić E., Djurović I., Jiang J. Time—frequency feature representation using energy concentration: an overview of recent advances, Signal Processing, 2009, no. 19 (1), pp. 153 — 183. DOI:10.1016/j.dsp.2007.12.004
  15. Kun Yu, Terri Lin., Hui Ma. et al. A combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machinery, IEEE Transactions on Instrumentation and Measurement, 2020, vol. 69, issue 4, pp. 1505 — 1518. DOI:10.1109/TIM.2019.2913058
  16. Bakhvalov I.S., Zhidkov N.N., Kobel’kov G.M. Chislennye metody (Numerical methods), Moscow, BINOM. Laboratoriya znanii, 2003, 636 p.
  17. Potekhin D.S. Sistemy upravleniya i informatsionnye tekhnologii, 2009, no. 4-1 (38), pp. 180 — 183.
  18. Astaf’eva N.M. Uspekhi fizicheskikh nauk, 1996, vol. 166, no. 11, pp. 1145 — 1170.
  19. Kosarev V.P., Andryushchenko T.T. Chislennye metody lineinoi algebry (Numerical methods of linear algebra), Saint Petersburg, Lan’ P, 2016, 496 p.
  20. Tarasov I.E., Potekhin D.S. Rossiiskii tekhnologicheskii zhurnal, 2018, no. 6 (6), pp. 41 — 54. DOI: 10.32362/2500-316X-2018-6-6-41-54.

  21. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход