Possible methods for controlling the output power of amplifier modules based on m-type devices


DOI: 10.34759/trd-2022-122-14

Аuthors

Nikitin A. D.1*, Ivliev A. S.2**

1. Research and production corporation "Istok"named after Shokin, Fryazino, Moscow region, Russia
2. Radiotechnical Institute named after academician A.L. Mints, NPC-5, Saratov, Russia

*e-mail: a.nikitin.2018@mail.ru
**e-mail: ivliev-aleksandr@mail.ru

Abstract

The article is devoted to the study of the operation of M-type amplifiers in various output power control modes, to realize the possibility of multi-mode operation of transmitting modules of radar stations (RLS) on active phased array antenns using M-type electrovacuum devices (EVD). The need for such studies arose with the increasing requirements for powerful transmitting modules. The results of studies of various methods for controlling the output power of the amplitron are presented. A fundamentally new way to control the output power of M-type amplifiers is considered - control of the operating voltage with a change in the magnitude of the magnetic induction.

As a result of the studies carried out on the possibility of operating M-type amplifiers in the output power control mode, the following was revealed:

-when controlling the input signal, the range of output power variation is at least 1.0 dB;

- when controlling the anode current, the range of output power variation is at least 5.0 dB;

- when controlling the operating voltage, the range of output power variation is at least 5.2 dB.

The results obtained can be of great practical importance in the construction of powerful transmitting amplifying modules for multi-mode radars with active phased array antennas and passive phased antennas array. It is shown that the use of a combined method of output power control, which combines the control of the input signal, anode current and control of the anode voltage, will allow changing the output power of the amplifier in the range of more than 11 dB.

It was also shown that when controlling the input signal of the amplifier, it is possible to expand the operating frequency range of the amplifying module up to 10-12%.

Keywords:

high-power transmitting modules, M-type amplifiers, amplitron, active phased array antenna (APAA), radar multi-mode operation

References

  1. Kanashchenkov A.I., Novikov S.V., Kulakova D.S. Uspekhi nauki i obrazovaniya, 2016, vol. 3, no. 9, pp. 103-105.

  2. Druzin S.V., Maiorov V.V., Gorevich B.N. Vestnik Kontserna VKO «Almaz – Antei», 2019, no. 4, pp. 7-18. URL: https://doi.org/10.38013/2542-0542-2019-4-7-18

  3. Verba V.S. Zhurnal radioelektroniki, 2012, no. 1. URL: http://jre.cplire.ru/jre/nov12/9/text.html

  4. Bystrov R.P., Gulyaev Yu.V., Cherepenin B.A., Sokolov A.V. Radiotekhnika, 2010, no. 8, pp. 71-90.

  5. Belous A.I., Merdanov M.K., Shvedov S.V. SVCh-elektronika v sistemakh radiolokatsii i svyazi (Microwave electronics in radar and communication systems), Moscow, Tekhnosfera, 2016, 688 p.

  6. Grundman M. Osnovy fiziki poluprovodnikov, nanofizika i tekhnicheskie prilozheniya (Fundamentals of semiconductor physics, nanophysics and technical applications), Moscow, Fizmatlit, 2012, 772 p.

  7. Perovskii E.V., Eremin V.P., Lyashenko A.V., Solopov A.A., Fedorenko E.A. Izvestiya Rossiiskoi akademii raketnykh i artilleriiskikh nauk, 2013, no. 1 (76), pp. 93-98.

  8. Pasternak Irvin. Radar Technology Advancements and New Applications, Microwave Journal California, 2017.

  9. Fursaev M.A., Eremin V.P., Guttsait E.M. Usiliteli M-tipa s katodom v prostranstve vzaimodeistviya (M-type amplifiers with a cathode in theteraction space), Moscow, MEI, 1976, 85 p.

  10. Sukhodolets L.G. Moshchnye Vakuumnye SVCh-pribory (Powerful vacuum microwave devices), Moscow, Izd-vo IKAR, 2014, 272 p.

  11. Klempitt L. (red). Moshchnye elektrovakuumnye pribory SVCh. V kn. Usilitel' M-tipa s raspredelennoi emissiei. (M-type amplifier with distributed emission. In the book: Powerful electrovacuum microwave devices), Moscow, Mir, 1974, pp. 69-101.

  12. Jirun Luo et al. A Review of Microwave Vacuum Devices in China: Theory and Device Development Including High-Power Klystrons, Spaceborne TWTs, and Gyro-TWTs, IEEE Microwave Magazine, April 2021, vol. 22, issue 4. URL: https://ieeexplore.ieee.org/document/9366603

  13. Demin D.S., Kononenko P.I., Lebedenko V.I. et al. Trudy MAI, 2021, no. 119. URL: http://trudymai.ru/eng/published.php?ID=159790. DOI: 10.34759/trd-2021-119-12

  14. Makarov V.N., Sukhodolets L.G. Radiotekhnika, 2010, no. 1, pp. 97-106.

  15. Ivliev A.S., Pokotilov S.S. Vestnik Novgorodskogo gosudarstvennogo universiteta, 2020, no. 2 (118), pp. 72-75. DOI: 10.34680/2076-8052.2020.2(118).72-75

  16. Zykov L.S. Trudy MAI, 2015, no. 82. URL: http://trudymai.ru/eng/published.php?ID=58797

  17. Eremin V.P., Trushin A.N., Fedorenko E.A. Elektronnaya tekhnika. Seriya 1: CVCh-tekhnika, 2013, no. 3 (518), pp. 147-249.

  18. Novikov V.F. Doklady Akademii nauk vysshei shkoly Rossiiskoi Federatsii, 2017, no. 2 (35), pp. 84-96. DOI: 10.17212/1727-2769-2017-2-84-96

  19. Fedorov N.D. Elektronnye pribory SVCh i kvantovye pribory (Microwave electronic devices and quantum devices), Moscow, Atomizdat, 1979, 288 p.

  20. Grigor'ev A.D., Ivanov V.A., Molokovskii S.I. Mikrovolnovaya elektronika (Microwave electronics), Saint Petersburg, «Lan'», 2016, 495 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход