Plasmomechanical interpretation of excited inert gas atoms states
DOI: 10.34759/trd-2022-123-09
Аuthors
*, **, ***Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
*e-mail: gavrilovaann@mail.ru
**e-mail: kuli_marina@mail.ru
***e-mail: maria-post@mail.ru
Abstract
A plasma-mechanical approach to the problems of gas kinetics has been developed to improve passive optical diagnostic methods. The article considers the solution of quasi-stationary system of equations of radiation-collision model of inert gases low-temperature plasma depending on priority of electronic and photo-processes. The system of linear differential equations of kinetics is being reduced to a matrix form with a non-zero right part, which is being interpreted as an influence factor, for which a relaxation matrix is being introduced. The obtained matrix equation is being solved by iterative methods for the selected final configuration of the inert gas atom levels (argon, xenon, krypton) using various models of influence factors.
If electronic processes are considered as an influence factor, then the calculated dependencies of electron concentration on the total number of nuclei correspond to the state of local thermodynamic equilibrium. Graphically, this dependence on a logarithmic scale is represented by straight lines. The populations of excited levels correspond to the Boltzmann distribution.
If photo-processes are being regarded as an influence factor, then, a deviation from the rectilinear dependence of the electron concentration on the total number of nuclei is being observed in the area of low and high electron concentrations. However, the populations of excited levels still correspond to the Boltzmann distribution.
The dissociative recombination processes addition to the “influence factor” in the case of two-temperature plasma, when the electron temperature is much higher than the temperature of heavy particles, fundamentally changes the character of the diagrams. The article presents diagrams of the metastable states of heavy inert gases, which include a non-traditional hysteresis region. Without accounting for the dissociative recombination, the curves of the metastable state diagram degenerate into a typical dependence.
The meta-equilibrium states diagram is useful for estimates in plasma spectroscopy, as well as for optical diagnostics of plasma flows.
Keywords:
plasmomechanics, plasma of inert gases, the collisional–radiative model, dissociative recombination, a state vector, meta‒equilibrium state diagramReferences
-
Losev S.A., Sergievskaya A.L. Materialy VII Mezhdunarodnoi konferentsii po neravnovesnym protsessam v soplakh i struyakh, Moscow, Izd-vo MAI, 2008, pp. 286–288.
-
IX Mezhdunarodnyi simpozium po radiatsionnoi plazmodinamike: sbornik nauchnykh trudov, Moscow, Izd-vo NITs “Inzhener”, 2012. 283 p.
-
Kryukov V.G. Iskhakova R.L., Durigon A. Materialy VI Mezhdunarodnoi konferentsii po neravnovesnym protsessam v soplakh i struyakh, Moscow, Izd-vo MAI, 2006, pp. 220 – 222.
-
Abdullin A.L., Kryukov V.G., Berezovskaya K.A. Materialy XI Mezhdunarodnoi konferentsii po neravnovesnym protsessam v soplakh i struyakh, Moscow, Izd-vo MAI, 2016, pp. 116-118.
-
Kryukov V.G., Abdullin A.L., Demin A.V., Safiullin I.I. Trudy MAI, 2017, no. 92. URL: http://trudymai.ru/eng/published.php?ID=76848
-
Chebakova V.Yu. Uchenye zapiski Kazanskogo universiteta. Seriya: Fiziko-matematicheskie nauki, 2016, vol. 158, no. 3, pp. 404-423.
-
Polak L.S., Gol’denberg M.Ya., Levitskii A.A. Vychislitel’nye metody v khimicheskoi kinetike (Computational methods in chemical kinetics), Moscow, Nauka, 1984. 280 p.
-
Pirumov U.G., Roslyakov G.S. Chislennye metody gazovoi dinamiki (Numerical methods of gas dynamics), Moscow, Vysshaya shkola, 1987, 232 p.
-
Kollatts L. Zadachi na sobstvennye znacheniya (Tasks for eigenvalues), Moscow, Nauka, 1968, 501 p.
-
Chernyi G.G., Losev S.A. Fiziko–khimicheskie protsessy v gazovoi dinamike: spravochnik. T.I. (Physico–chemical processes in gas dynamics. Vol. I), Moscow, Izd-vo Moskovskogo universiteta, 1995, 343 p.
-
Chernyi G.G., Losev S.A. Fiziko–khimicheskie protsessy v gazovoi dinamike: spravochnik. T.II (Physico–chemical processes in gas dynamics. Vol. II), Moscow, Nauchno–izdatel’skii tsentr mekhaniki, 2002, 368 p.
-
Hyun-Kyung Chung, Mi-Young Song, Ji-Won Kwon et al. Population Kinetics Modeling of Low-Temperature Argon Plasma, Atoms, 2021, vol. 9, no. 4, pp. 100. URL: https://doi.org/10.3390/atoms9040100
-
Kil-Byoung Chai, Duck-Hee Kwon. Optical emission spectroscopy and collisional-radiative modeling for non-equilibrium, low temperature helium plasma, Spectrochimica Acta Part B Atomic Spectroscopy, 2021, vol. 183, pp. 106269. DOI:10.1016/j.sab.2021.106269
-
Krivoruchko D.D., Skrylev A.V., Skorokhod E.P. Trudy MAI, 2017, no 92. URL: http://trudymai.ru/eng/published.php?ID=76859
-
Gavrilova A.Yu., Kiselev A.G., Skorokhod E.P. Teplofizika vysokikh temperature, 2014, vol. 52, no. 2, pp. 174–185.
-
Morozov A.I. Vvedenie v plazmodinamiku (Introduction to plasmodynamics), Moscow, Fizmatlit, 2008, 616 p.
-
Chmykhova N.A. Matematicheskie modeli formirovaniya ravnovesnykh konfiguratsii plazmy v magnitnykh lovushkakh – galateyakh. Diss. kand. f-m. nauk (Mathematical models of formation of equilibrium plasma configurations in magnetic traps – Galateas. PhD thesis), Moscow, Keldysh Institute of Applied Mathematics Russian Academy of Science, 2015, 127 p.
-
Chirkov A.Yu. Vestnik MGTU im. N.E. Baumana. Seriya: Estestvennye nauki, 2006, no. 2, pp. 115-124.
-
Gordeev A.V. Fizika plazmy, 2010, vol. 36, no. 1, pp. 33-52.
-
Romanov G.S., Stepanov K.L., Stanchits L.K. Zhurnal prikladnoi spektroskopii, 1991, vol. 54, no. 5, pp. 825-832.
-
Romanov G.S., Stepanov K.L., Stanchits L.K. Vliyanie reabsorbtsii izlucheniya v liniyakh na kineticheskie kharakteristiki neravnovesnoi plazmy (The effect of reabsorption of radiation in the lines on kinetic characteristics of nonequilibrium plasma), Minsk, Izd-vo Instituta teplo- i masso-obmena im. A.V. Lykova AN BSSR, 1994, 37 p.
-
Gavrilova A.Yu., Kiselev A.G., Skorokhod E.P., Stanishevskaya M.E. Matematicheskoe modelirovanie, 1996, vol. 8, no. 6, pp. 103-108.
-
Semiokhin I.A. Elementarnye protsessy v nizkotemperaturnoi plazme (Elementary processes in low temperature plasma), Moscow, Izd-vo Moskovskogo universiteta, 1988, 142 p.
-
Gavrilova A.Yu., Skorokhod E.P. Secheniya i konstanty skorostei plazmokhimicheskikh reaktsii inertnykh gazov (Cross sections and rate constants of plasma chemical reactions of inert gases), Moscow, Izd-vo MAI, 2011, 192 p.
-
Golubovskii Yu.B., Kudryavtsev A.A., Nekuchaev V.O., Porokhova I.A., Tsendin L.D. Kinetika elektronov v neravnovesnoi gazorazryadnoi plazme (Kinetics of electrons in a nonequilibrium gas-discharge plasma), Saint Petersburg, Izd-vo Sankt-Peterburgskogo universiteta, 2004, 248 p.
-
Korn G., Korn T. Spravochnik po matematike (Handbook of Mathematics), Moscow, Nauka, 1974, 822 p.
-
Grim G. Spektroskopiya plazmy (Spectroscopy of plasma), Moscow, Atomizdat, 1969, 452 p.
-
Ikramov Kh.D. Nesimmetrichnaya problema sobstvennykh znachenii. Chislennye metody (An asymmetric eigenvalue problem. Numerical methods), Moscow, Nauka, 1991, 325 p.
-
Serebryakova I.E. Rekurrentnye resheniya nesimmetrichnoi spektral’noi zadachi i ikh trigonometricheskoe predstavleniyu (Recurrent solutions of asymmetrical spectral problems and their trigonometric representation), Moscow, Izd-vo MAI, 2014, 96 p.
Download