Synthesis of the aircraft-based phase direction finder


DOI: 10.34759/trd-2022-123-12

Аuthors

Azarov A. v.1*, Karavaev M. N.1**, Rozhkov S. S.1***, Slavyansky A. O.1****, Smolka K. A.2*****

1. STC "Geomonitoring Systems",
2. ITMO University, 49, Kronverkskiy av , St. Petersburg, 197101, Russia

*e-mail: andrey_91@bk.ru
**e-mail: kmn.2693@yandex.ru
***e-mail: SSR.kgd@mail.ru
****e-mail: andrey.slavyanskiy@gmail.com
*****e-mail: konstantin.smolka@metalab.ifmo.ru

Abstract

The aim of the work is to create a small-sized passive radar complex for placement on an unmanned aerial vehicle.

The principles of construction of a radio direction finder operating in the range from 1 to 18 GHz, limited on weight and size characteristics, are considered. A direction finder with a different number of antennas (from three to five) was simulated.

An antenna system is proposed that provides a high probability of obtaining an azimuth to a radio source with an accuracy of up to one degree in the viewing area up to 180 degrees with elements representing a combined spiral antenna consisting of printed, hemispherical and cylindrical spiral antennas using plates of radio-absorbing material. Laboratory models of antennas were created and measured. A comparative analysis of the characteristics of the mathematical model and the antenna layout created by 3D printing was carried out, according to the results of which it should be noted the high efficiency of the manufacturing method used due to the high repeatability of the results, low cost and high speed of sample production.

When placing a passive radar complex on a UAV, it is possible to determine not only the direction to the radiation source – its angular, but also geographical coordinates, and hence the range to the source of signal. The calculation of several bearings on the source of signal from different points of the UAV trajectory spaced in the plane allows us to solve the problem of locating it using the maximum likelihood method based on a set of measurements of bearings on the source and UAV motion parameters (angle measurements and altimeter information).

Keywords:

radar, phase direction finding, antenna system, unmanned aerial vehicle

References

  1. Rembovskii A.M. Radiomonitoring: zadachi, metody i sredstva (Radio monitoring: tasks, methods and means), Moscow, Goryachaya linyaya-Telekom, 2006, 492 p.

  2. Yanichkin A.Yu., Pogorelov M.P., Chervakov V.O., Potapov V.A. I Vserossiiskaya nauchno-prakticheskaya konferentsiya “Avionika. Aktual'nye voprosy sostoyaniya, ekspluatatsii i razvitiya kompleksov bortovogo REO vozdushnykh sudov, problemy podgotovki spetsialistov”: sbornik statei, Voronezh, VUNTs VVA, 2016, pp. 333-336.

  3. Slatin V.V. Aviatsionnye sistemy, 2015, no. 2, pp. 2-16.

  4. Studenikin A.V., Mikhalin V.A., Ivanov R.V., Magarshak S.I. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, vol. 9, no. 4, pp. 102-106.

  5. Daniel Guerin, Shane Jackson, Jonathan Kelly. Passive Direction Finding, Worcester Polytechnic Institute, 2012, 94 p.

  6. Fokin G.A., Al'-Odkhari A.Kh. T-COMM: Telekommunikatsii i transport, 2017, vol. 11, no. 4, pp. 41-46.

  7. Alekseev M.V. XXV Mezhdunarodnyi nauchno-issledovatel'skii konkurs “Luchshaya studencheskaya stat'ya”: sbornik statei, Penza, Izd-vo Nauka i prosveshchenie, 2019, pp. 56-58.

  8. Belov V.I. Teoriya fazovykh izmeritel'nykh system (Theory of phase measuring systems), Tomsk, Izd-vo TUSUR, 1994, 102 p.

  9. Denisov V.P., Dubinin D.V., Krutikov M.V., Meshcheryakov A.A. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki, 2011, no. 2 (24), pp. 7-15.

  10. Gubarenko M.A. Problemy sovremennoi nauki i obrazovaniya, 2014, no. 11 (29), pp. 18-19.

  11. Denisov V.P., Dubinin D.V. Fazovye radiopelengatory (Phase direction finders), Tomsk, Izd-vo TUSUR, 2002, 252 p.

  12. Porubov G.G., Denisov V.P. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki, 2015, no. 3 (37), pp. 25-32.

  13. Denisov V.P., Dubinin D.V., Erofeev D.V. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki, 2017, no. 4, pp. 11-16.

  14. Krikov D.S. Trudy MAI, 2018, no. 98. URL: http://trudymai.ru/eng/published.php?ID=90403

  15. Oreshkin V.I., Meleshin Yu.M., Tsvetkov V.K Trudy MAI, 2021, no. 120. URL: http://trudymai.ru/eng/published.php?ID=161424. DOI: 10.34759/trd-2021-120-10

  16. Kokhnyuk D.D., Borovik I.A., Fedorov Ya.V. et al. Patent RU 2687895 C1, 16.05.2019.

  17. Generalov A.G., Gadzhiev E.V., Salikhov M.R. Trudy MAI, 2019, no. 106. URL: http://trudymai.ru/eng/published.php?ID=105685

  18. Chelpanov I.B., Nikiforov S.O., Kocheva T.V., Nikiforov B.S. Vestnik Buryatskogo gosudarstvennogo universiteta, 2010, no. 9, pp. 283-289.

  19. Sergeeva O.Yu. Nanotekhnologii v stroitel'stve: nauchnyi internet-zhurnal, 2018, vol. 10, no. 4, pp. 142-158.

  20. Yakimov A.N., Bestugin A.R., Kirshina I.A. Elektromagnitnye volny i elektronnye sistemy, 2019, vol. 24, no. 2, pp. 13-19.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход