Safety system for shredding space debris in orbital conditions
DOI: 10.34759/trd-2022-124-04
Аuthors
Joint Stock Company “Russian Space Systems”, JSC “RSS”, 53, Aviamotornaya str., Moscow, 111250, Russia
e-mail: Alttaira@yandex.ru
Abstract
The space debris shredding safety system is a fundamental system in the processing of space debris into fuel directly in orbit. This study is devoted to the possibility of testing the technology for processing metallized debris on Earth, as well as the development of the concept of a safety system for shredding space debris. In the wreckage of the stages of rockets, propellant vapors remain, which, if crushed, can provoke an explosion.
The main problem of the article is the development of the concept of a safety system for shredding space debris directly in orbit.
The purpose of this work is to consider ground tests of the technology for processing metallized space debris into fuel.
The relevance of this work lies in the concept of a safety system for shredding space debris directly in orbit.
The most important source of non-fragmentation debris was more than 2,460 firings of solid rocket motors, which released aluminum oxide (Al2O3) in the form of micrometer dust and slag particles ranging in size from mm to cm.
The main cause of in-orbit explosions is due to residual fuel that remains in tanks or fuel lines, or other leftover energy sources that remain on board after a rocket or satellite stage has been dropped into Earth orbit.
These fragmentation events are thought to have generated a population of objects larger than 1 cm, numbering on the order of 900,000. The sporadic flux from natural meteoroids can only dominate the flux from human-made objects near sizes of 0.1-1 mm.
Keywords:
space debris, spacecraft, security system, cooling system, shreddingReferences
- ESA’S ANNUAL SPACE ENVIRONMENT REPORT. ESA UNCLASSIFIED. URL: https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.pdf
- Makarov Yu.N. Monitoring tekhnogennogo zasoreniya okolozemnogo prostranstva i preduprezhdenie ob opasnykh situatsiyakh, sozdavaemykh kosmicheskim musorom (), Moscow, TsNIImash, 2015, 244 p.
- Barkova M.E. Trudy MAI, 2018, no. 103. URL: http://trudymai.ru/eng/published.php?ID=100712
- Avdeev A.V. Trudy MAI, 2012, no. 61. URL: http://trudymai.ru/eng/published.php?ID=35496
- Strategii razvitiya promyshlennosti po obrabotke, utilizatsii i obezvrezhivaniyu otkhodov proizvodstva i potrebleniya na period do 2030 goda. URL: http://static.government.ru/media/files/y8PMkQGZLfbY7jhn6QMruaKoferAowzJ.pdf
- Pikalov R.S., Yudintsev V.V. Trudy MAI, 2018, no. 100. URL: http://trudymai.ru/eng/published.php?ID=93299
- Barkova M.E. Vserossiiskaya nauchnaya konferentsiya «Kosmicheskii musor: fundamental’nye i prakticheskie aspekty ugrozy»: sbornik trudov, Moscow, IKI RAN, 2019, pp. 171-175. DOI: 10/21046/spacedebris2019-171-175
- Wang Kun-peng, Zhang Yan, Dai Ze. Analysis of laser wavelength selection in diffuse reflection laser ranging for space debris, 2015 International Conference on Optoelectronics and Microelectronics (ICOM). DOI: 10.1109/ICoOM.2015.7398757
- Haifeng Zhang, Mingliang Long, Huarong Deng, Zhibo Wu, Zhien Cheng, and Zhongping Zhang. Space debris laser ranging with a 60 W single-frequency slab nanosecond green laser at 200 Hz, Chinese Optics Letters, 2019, vol. 17, issue 5, pp. 051404. DOI: https://doi.org/10.5281/zenodo.3592443
- M.E. Barkova. About processing of technogenic space debris in fuel in low orbits, AIP Conference Proceedings, USA. URL: https://aip.scitation.org/doi/abs/10.1063/5.0035802
- Vepa R. Dynamics and Control of Autonomous Space Vehicles and Robotics, University Printing House, New York, NY, USA, 2019. DOI:10.1017/9781108525404.001
- Seidelmann P.K., Archinal B.A., A’hearn M.F. et al. Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements, Celestial Mechanics and Dynamical Astronomy, 2007, vol. 98, pp. 155–180. DOI:10.1007/s10569-007-9072-y
- Klushantsev B.V., Kosarev A.I., Muizemnek Yu.A. Drobilki. Konstruktsii, raschet, osobennosti ekspluatatsii (), Moscow, Mashinostroenie, 1990, 320 p.
- Treshchev A.A., Kuznetsova V.O. Stroitel’naya mekhanika i konstruktsii, 2019, no. 3(22), pp. 7-21
- Popov V.G., Yaroslavtsev N.L. Zhidkostnye raketnye dvigateli (), Moscow, MATI, KTU im. K.E. Tsiolkovskogo, 2001, 171 p.
- Barkova M.E., Kuznetsova V.O., Zhukov A.O., Kartsan I.N. Management of processes of space debris capture and processing into fuel, II International Scientific Conference on Metrological Support of Innovative Technologies (ICMSIT II-2021), Krasnoyarsk, 2021, pp. 42086. DOI: 10.1088/1742-6596/1889/4/042086
- David St-Onge, Inna Sharf, Luc Sagnières, Clément Gosselin. A deployable mechanism concept for the collection of small-to-medium-size space debris, Advances in Space Research, 2017, vol. 61 (5), pp. 1286-1297. URL: https://doi.org/10.1016/j.asr.2018.08.038
- Panfeng Huang, Fan Zhang, Zhongjie Meng, Zhengxiong Liu. Adaptive control for space debris removal with uncertain kinematics, dynamics and states, Acta Astronautica, 2016, vol. 128, pp. 416-430. URL:https://doi.org/10.1016/j.actaastro.2016.07.043
- Leonard Felicetti M. Reza Emami. A multi-spacecraft formation approach to space debris surveillance, Acta Astronautica, 2016, vol. 127, pp. 491-504. URL: https://doi.org/10.1016/j.actaastro.2016.05.040
- Baiju A.P., Jayan N., Nageswaran G. et al. A Technology for Improving Regenerative Cooling in Advanced Cryogenic Rocket Engines for Space Transportation, Advances in Astronautics Science and Technology, 2021, no. 4 (1). DOI:10.1007/s42423-020-00071-0
- P. Qian, Y. Liu, S. Gu, P. Xia, Zh. Gu. et al. Research on Cooling Technology of Shredder Cutting Tool With Ultrasonic Vibration-Assisted Cutting, IEEE, 2019. DOI: 10.1109/ACCESS.2019.2941645
- Y. Cengel. Heat transfer: A practical approach, 1998, Boston, arXiv:arXiv:1011.1669v3.
23. Singh Suneet, P.K. Jain, Rizwan-uddin. Analytical Solution for Three-Dimensional, Unsteady Heat Conduction in a Multilayer Sphere, Journal Heat Transfer, 2016, vol. 138(10). DOI:10.1115/1.4033536
Download