On the issue of constructing a spacecraft route for the disposal of space debris and a space debris object


DOI: 10.34759/trd-2022-125-01

Аuthors

Barkova M. E.

Joint Stock Company “Russian Space Systems”, JSC “RSS”, 53, Aviamotornaya str., Moscow, 111250, Russia

e-mail: Alttaira@yandex.ru

Abstract

The article is a continuation of research published in issue No. 110 of the Proceedings of the MAI and AIP Conference Proceedings 2318, 020009 (2021). The research is devoted to the rendezvous of a space debris disposal spacecraft (hereinafter SDC — space debris collector) with a space debris object for the purpose of capture and processing into fuel.

The main problem of the article is a graphical evaluation of the study performed earlier.

The purpose of this work is a graphical assessment of the approach of the SCM and the selected space debris object by constructing their paths.

The relevance of this work is to increase the number of space debris objects that can damage spacecraft in a collision.

According to space debris data provided by the European Space Agency, the number of debris objects is as follows:

— 36,500 space debris objects larger than 10 cm;

— 1 million space debris objects ranging in size from more than 1 cm to 10 cm;

— 130 million space debris objects ranging in size from more than 1 mm to 1 cm.

The author concludes that the amount of space debris decreases slowly and only during periods when its formation is small and there is no particularly strong fragmentation.

The probability of a spacecraft colliding with space debris increases at orbital altitudes of 800 — 950 km.

In satellite orbit, you can see that the disturbing forces and additional masses from the collected space debris had little effect only in small periods.

Keywords:

space debris, spacecraft, spacecraft path, graphical evaluation

References

  1. Barkova M.E. Trudy MAI, 2020, no. 110. URL: https://trudymai.ru/eng/published.php?ID=112927. DOI: 10.34759/trd-2020-110-17
  2. Barkova M.E. About processing of technogenic space debris in fuel in low orbits, AIP Conference Proceedings, 2021, USA. URL: https://aip.scitation.org/doi/abs/10.1063/5.0035802
  3. ESA’S ANNUAL SPACE ENVIRONMENT REPORT. ESA UNCLASSIFIED. URL:https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.pdf
  4. Barkova M.E. Trudy MAI, 2018, no. 103. URL: http://trudymai.ru/eng/published.php?ID=100712
  5. Thomas Iversen Bredeli. Modeling and simulation of space debris distribution, Master of Science in Technology, July 24, 2013.
  6. Subhadr Gupta, Raj Khismatrao, Suvigya Gupta, Harsh Singh. Space Debris Categorization and Sorting using MATLAB, 72nd International Astronautical Congress (IAC), Dubai, October 2021.
  7. Lei Lan, Jingyang Li, Hexi Baoyin. Debris Engine: A Potential Thruster for Space Debris Removal, 2015, Tsinghua University, URL: https://arxiv.org/vc/arxiv/papers/1511/1511.07246v1.pdf
  8. Nazarenko A.I. Modelirovanie kosmicheskogo musora (Modeling of space debris), Moscow, IKI RAN, 2013, 216 p.
  9. Malanowski M., Kulpa K. Two Methods for Target Localization in Multistatic Passive Radar, IEEE Transactions on Aerospace and Electronic Systems, 2012, vol. 48, no. 1, pp. 572-578.
  10. Telegin A.M., Semkin N.D. Kosmicheskaya pyl’ i ee vzaimodeistvie s kosmicheskimi apparatami (Cosmic dust and its interaction with spacecraft), Samara, Izd- vo SGAU, 2015, 124 p.
  11. Aslanov V.S., Alekseev A.V., Ledkov A.S. Trudy MAI, 2018, no. 90. URL: https://trudymai.ru/eng/published.php?ID=74644
  12. Willis N.J. Bistatic Radar, SciTech Publishing, 2005, 344 p.
  13. Opiela J.N., Hillary E. et al. Debris Assessment Software — User’s Guide, Lyndon, Johnson Space Center, Tech. Rep., 2012.
  14. Klinkrad H. Space Debris — Models and Risk Analysis, Springer, 2006. DOI:10.1007/3-540-37674-7
  15. Kessler D.J., Johnson N.L., Liou J.-C., Matney M.J. The Kessler Syndrome: Implications of Future Space operations, NASA, Tech. Rep., 2010.
  16. J.-C. Liou, M. J. Matney, P. D. The New NASA Orbital Debris Engineering — Model ORDEM 2000, NASA, 2002.
  17. Pikalov R.S., Yudintsev V.V. Trudy MAI, 2018, no. 100. URL: http://trudymai.ru/eng/published.php?ID=93299
  18. Avdeev A.V. Trudy MAI, 2012, no. 61. URL: http://trudymai.ru/eng/published.php?ID=35496
  19. Nizametdinov F.R., Sorokin F.D., Ivannikov V.V. Trudy MAI, 2019, no. 109. URL: http://trudymai.ru/eng/published.php?ID=111337. DOI: 10.34759/trd-2019-109-2
  20. Jasper L.E.Z., Seubert C.R., Schaub H., Trushkyakov V., Yutkin E.: Tethered tug for large low earth orbit debris removal, AAS/AIAA Astrodynamics Specialists Conference Astrodynamic, Charleston, South Carolina, 2012.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход