Numerical modeling of damping coatings


DOI: 10.34759/trd-2022-126-12

Аuthors

Polyakov P. O.1*, Shesterkin P. S.2**

1. Toropov Machine-Building Design Bureau "Vimpel", 90, Volokolamskoe shosse, Moscow, 125424, Russia
2. Military industrial corporation «NPO Mashinostroyenia», 33, Gagarina str., Reutov, Moscow region, 143966, Russia

*e-mail: p.o.polyakov@yandex.ru
**e-mail: blackshoot.92@mail.ru

Abstract

In various industrial sectors, damping materials are used that are suitable in their properties for specific working conditions. The use of damping tapes is one of the existing ways to improve the damping properties of materials. At the moment, for modern thin-walled structures, there is a need to develop more advanced calculation models, for which the actual operating conditions of structures should be sufficiently fully reflected, taking into account the mechanical properties of the material from which its elements are made. The damping properties of the materials from which they are made, as well as the amplitudes of their oscillations, have a significant impact on the dynamic tension of the elements of thin-walled structures. Improving damping properties is one of the methods to increase the service life of structural elements subject to cyclic loading during operation. To damp vibrations in different frequency ranges that occur under external influence, as well as on the weight characteristics of the system, the choice of optimal types of damping coatings depends. This article explores the effect of 3M brand damping tape on the dynamic characteristics of a cantilever beam and the simulation of this process. and modeling of this process. The results of numerical simulation of free vibrations of an aluminum beam-plate without damping layers and with damping tapes glued to the front surfaces (three-layer beams) are presented. For numerical simulation of models of plates of all investigated sizes with a damping tape, simulation of the oscillatory process was applied similarly to physical testing. A finite element model of a plate with a grid is constructed. The dynamic characteristics of three-layer beams are determined. The dependence of the change in the damping coefficient on the amplitude for samples with and without damping tapes for different amplitudes is established, the amplitude-frequency characteristic, the logarithmic damping decrement, the damping coefficient and the natural frequency of the samples without a damping layer and with its participation are obtained.

Numerical modeling was carried out in order to compare the experimental results of the dynamic characteristics of a cantilever beam without and with a damping layer.

Keywords:

damping tape, three-layer beam, natural frequencies, logarithmic decrement

References

  1. Solomatov V.I., Bobryshev A.N., Khimmler K.G. Polimernye kompozitsionnye materialy v stroitel’stve (Polymer composite materials in construction), Moscow, Stroiizdat, 1988, 312 p.
  2. G. Wu, J.-M. Yang, The mechanical behavior of GLARE laminates for aircraft structures, JOM: the journal of the Minerals, Metals & Materials Society, 2005, no. 57 (1), pp. 72–79. DOI: 10.1007/s11837-005-0067-4
  3. Jakubczak P., Bienias J., Surowska B. Interlaminar shear strength of fibre metal laminates after thermal cycles, Composite Structure, 2018, vol. 206, pp. 876–887. DOI: 10.1016/j.compstruct.2018.09.001
  4. Vogeslang L.B., Volt A. Development of Fibre Metal Laminates for Advanced Aerospace Materials, Journal of Materials Processing Technology, 2000, vol. 103 (1), pp. 1–5. DOI: 10.1016/S0924-0136(00)00411-8
  5. Bai S., Djafari V., Andr´eani M., Francois D. Study of shortbeam shear tests for composite materials, Composites Science Technology, 1995, vol. 55 (4), pp. 343–348. DOI: 10.1016/0266-3538(95)00077-1
  6. Sinmazçelik T., Avcu E., Bora M.Ö., Çoban O. A review: Fibre metal laminates, background, bonding types and applied test methods, Materials and Design, 2011, vol. 32 (7), pp. 3671-3685. DOI: 10.1016/j.matdes.2011.03.011
  7. Kotik H.G., Ipina J.E.P. Short-beam shear fatigue behavior of fiber metal laminate (GLARE), International Journal of Fatigue, 2017, no. 95, pp. 236-242. DOI: 10.1016/j. ijfatigue.2016.11.001
  8. Ganbarov A.B. Obosnovanie i razrabotka vibrodempfiruyushchego pokrytiya s uprugo-voloknistoĭ strukturoĭ (Substantiation and development of a vibration-damping coating with an elastic-fibrous structure), PhD thesis, Voronezh, 2004, 130 p.
  9. Lur’e S.A., Dudchenko A.A., Nguen D.K. Trudy MAI, 2013, no. 75. URL: https://trudymai.ru/eng/published.php?ID=49674
  10. Carlsson LA, Adams DF, Pipes RB. Experimental characterization of advanced composite materials, CRC press, 2014, 256 p.
  11. Kubit A., Trzepiecinski T., Klonica M., Hebda M., Pytel M. The influence of temperature gradient thermal shock cycles on the interlaminar shear strength of fibre metal laminate composite determined by the short beam test, Composites Part B: Engineering, 2019, vol. 176. DOI:10.1016/j.compositesb.2019.107217
  12. Megahed M., Abd El-baky M.A., Alsaeedy A.M., Alshorbagy A.E. An experimental investigation on the effect of incorporation of different nanofillers on the mechanical characterization of fiber metal laminate, Composites Part B: Engineering, 2019, vol. 176. DOI: 10.1016/j.compositesb.2019.107277
  13. Rao S.S. Mechanical Vibrations, Addsion-Wesley, MA. 1995, 912 p.
  14. Grigolyuk E.I., Selezov I.T. Mekhanika deformiruemykh tverdykh tel. Neklassicheskie teorii kolebanii sterzhnei plastin i obolochek (Mechanics of deformable solids Volume 5 Non-classical theories of oscillations of plates’ rods and shells), Moscow, VINITI, 1973, vol. 5, 272 p.
  15. Rabinskii L.N., Babaitsev A.V., Shesterkin P.S. Mekhanika kompozitsionnykh materialov i konstruktsii, 2022, vol. 27, no. 5, pp. 12.
  16. Prokudin O.A., Solyaev Y.O., Babaytsev A.V., Artemyev A.V., Korobkov M.A. Dynamic characteristics of three-layer beams with load-bearing layers made of alumino-glass plastic, PNRPU Mechanics Bulletin, 2020, vol. 4, pp. 260–270. DOI: 10.15593/perm.mech/2020.4.22
  17. Rikards R.B., Barkanov E.H. Mekhanika kompozitnykh materialov, 1991, no. 5, pp. 823-830.
  18. Rikards R.B., Chate A.K., Kenzer M.L. Konechnyi element sloistoi balki. Sistemy avtomatizirovannogo proektirovaniya v mashinostroenii (Finite element of a layered beam. Automated Design Systems in Mechanical Engineering), Riga, Znnatne, 1990, pp. 12-22.
  19. Klimov A.K., Klimov D.A., Nizovtsev V.E., Ukhov P.A. Trudy MAI, 2013, no. 67. URL: https://trudymai.ru/eng/published.php?ID=41486
  20. Kriven’ G.I., Makovskii S.V. Trudy MAI, 2020, no. 114. URL: https://trudymai.ru/eng/published.php?ID=118729. DOI: 10.34759/trd-2020-114-03

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход