Mathematical modeling of injection of negative ion flux into the wall plasma


DOI: 10.34759/trd-2023-128-08

Аuthors

Kotel'nikov V. A.*, Kotelnikov M. V.*, Krylov S. S.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: mvk_home@mail.ru

Abstract

To solve the problem of radio communication with hypersonic aircraft, it is proposed to create a radio-transparent channel by injecting a stream of negatively charged ions into the boundary layer. The negative volume charge arising inside the channel primarily displaces lighter negatively charged particles — electrons — from it. The electron concentration decreases, which leads to a weakening of the attenuation of radio waves and radio communication is restored. The positively and negatively charged ions remaining in the channel due to their relatively large mass do not affect the passage of electromagnetic waves.

A computer simulation of the injection of a negative ion flux into a dense plasma has been carried out. In the process of solving the task, the following stages can be distinguished:

  1. Finding the parameters of the background plasma near the surface of a disk with holes for ion injection in the absence of a flow of negative ions from it;
  2. Finding the plasma parameters in the beam-plasma formation after the start of beam injection;
  3. Finding the volt-ampere characteristics of a conductive disk with holes for ion injection.

The mathematical model of the problem at the first stage, taking into account the weak degree of ionization, splits into two independent systems of differential equations for neutral and charged particles.

The electrodynamic part of the problem, taking into account the assumptions made at the first stage, includes the continuity equations for ions and electrons and the Poisson equation for a self-consistent electric field.

The method of sequential iterations over time was used to solve the problem. In this case, the perturbed zone evolves from the initial to the final stationary state. The latter is considered as the desired solution to the problem. The continuity equations for ions and electrons were solved by the Davydov method of large particles, and the Poisson equation by spectral methods in which the desired function decomposes according to the eigenfunctions of the differential operator.

At the second stage, the emission of a stream of negatively charged ions into the space formed at stage 1 begins. The mathematical model of the second stage includes the equation of motion of negative ions, the continuity equations for all charged components and the Poisson equation for a self-consistent electric field. The continuity equations were solved by the Davydov method of large particles, the equation of motion of negative ions — by the arithmetic mean method, the Poisson equation — by spectral methods.

The evolution of ion and electron currents on the probe (stage 3) was traced to their establishment.

The distribution of potential, electron concentration and concentration of negative ions along the beam axis, the values of the current density of positive ions and electrons on the disk from which the injection occurs were investigated.

Keywords:

dense plasma, continuity equation, Poisson equation, large particle method, radio-transparent channel, beam-plasma formation, ion injection

References

  1. Kotel’nikov V.A., Kotel’nikov M.V., Petrov I.L. Metod upravleniya parametrami pogranichnogo sloya s pomoshch’yu inzhektsii v nego potoka otritsatel’no zaryazhennykh ionov (A method for controlling the parameters of the boundary layer by injecting a stream of negatively charged ions into it). Avtorskoe svidetel’stvo 4510419/09, 06.01.89
  2. Semashko N.N. Inzhektor bystrykh atomov vodoroda (Fast Hydrogen Atom Injector), Moscow, Energoatomizdat, 1986, 168 p.
  3. Kotel’nikov V.A., Demkov V.P. Inzhenerno-fizicheskii zhurnal, 1990, vol. 59, no. 2, pp. 221-224.
  4. Bystritskii V.M., Didenko A.N. Moshchnye ionnye puchki (Powerful ion beams), Moscow, Energoatomizdat, 1984, 152 p.
  5. Kondratenko A.M., Kuklin V.M. Osnovy plazmennoi elektroniki (Fundamentals of plasma electronics), Moscow, Energoatomizdat, 1988, 320 p.
  6. Sudan R.N. Kollektivnoe vzaimodeistvie puchka s plazmoi. V kn. «Osnovy fiziki plazmy». (Collective interaction of the beam with the plasma. In the book «Fundamentals of Plasma Physics»). Dopolnenie k t. 2 / Pod redaktsiei Galeeva A.A., Sudan R.N. Moscow, Energoatomizdat, 1984, pp. 38-82, pp. 147-237.
  7. Kanev S.V. Trudy MAI, 2017, no. 94. URL: https://trudymai.ru/eng/published.php?ID=80967
  8. Cherrington B.E. The use of electrostatic probes for plasma diagnostics — a review, Plasma Chemistry and Plasma Processing, 1982, vol. 2, no. 2, pp. 113-140.
  9. Godunov S.K. Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki (Numerical solution of multidimensional problems of gas dynamics), Moscow, Nauka, 1976, 400 p.
  10. Sedov L.I. Mekhanika sploshnykh sred (Continuum mechanics), Moscow, Nauka, 1983, 528 p.
  11. Loitsyanskii L.G. Mekhanika zhidkosti i gaza (Fluid and gas mechanics), Moscow, Nauka, 1987, 840 p.
  12. Kotel’nikov V.A., Kotel’nikov M.V. Zondovaya diagnostika plazmennykh potokov (Probe diagnostics of plasma flows), Moscow, Izhevsk, NII «Regulyarnaya i khaoticheskaya dinamika», 2016, 440 p.
  13. Chan P., Telbot L., Turyan K. Elektricheskii zond v nepodvizhnoi i dvizhushcheisya plazme. Teoriya i primenenie (An electric probe in a stationary and moving plasma. Theory and application), Moscow, Mir, 1972, 202 p.
  14. Alekseev B.V., Kotel’nikov V.A. Zondovyi metod diagnostiki plazmy (Probe method of plasma diagnostics), Moscow, Energoatomizdat, 1986, 240 p.
  15. Maskaikin V.A. Trudy MAI, 2020, no. 115. URL: https://trudymai.ru/eng/published.php?ID=119976. DOI: 10.34759/trd-2020-115-19
  16. Panteleev A.V., Luneva S.Yu. Trudy MAI, 2019, no. 109. URL: https://trudymai.ru/eng/published.php?ID=111433. DOI: 10.34759/trd-2019-109-27
  17. Chen F. Vvedenie v fiziku plazmy (Introduction to Plasma Physics), Moscow, Mir, 1987, 398 p.
  18. Raizer Yu.P. Fizika gazovogo razryada (Physics of gas discharge), Moscow, Nauka, 1987, 592 p.
  19. Rouch P. Vychislitel’naya gidrodinamika (Computational fluid dynamics), Moscow, Mir, 1980, 616 p.
  20. Kotel’nikov V.A., Kotel’nikov M.V., Krylov S.S. Matematicheskoe modelirovanie elektrodinamiki potokov plazmy, istekayushchei iz sopla ERD i ZhRD (Mathematical modeling of electrodynamics of plasma flows flowing from the nozzle of electric jet engine and liquid jet engine), Izhevsk, Institut komp’yuternykh issledovanii, 2022, 192 p.

  21. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход