The development of simulation model of channel with burst error arrays


DOI: 10.34759/trd-2023-128-12

Аuthors

Volkov A. S.

National Research University of Electronic Technology, Bld. 1, Shokin Square, Zelenograd, Moscow, Russia, 124498

e-mail: leshvol@mail.ru

Abstract

The article studied one of the most up-to-date problems in telecommunications associated with the burst-error channels. Thus, the model of a discrete channel in communication system under the burst-error arrays based on Gilbert model was developed. The burst error affects critically the received signal reliability under conditions of Gaussian noise and in some cases fully distorts the received signal. The purpose of the article consists in considering the main properties of the Gilbert channel and their impact on the data sequence transmitted through wireless communication channel under conditions of the additive white Gaussian noise (AWGN).

The valuation function of the main variables in Gilbert channel is the probability scheme N = ⟨P,Q,E⟩, which includes the purposive parameters being described by this model: P is a probability of a “good” channel state, Q is a probability of a “bad” state, while E stands for the probability of error in the “bad” channel state. Thus, the article proposes the adaptive generation algorithm of burst-error arrays according to the said parameters of the probability scheme.

Simulation model of the communication system by the Gilbert model and AWGN was developed. An extra block, allowing the code word  supplementing with zeroes was described for it. This backup block was introduced for the further studies with a view to additional energy gain.

One of the most important topics we touched upon is matrices interleaver and deinterleaver. In the end of the article, we adduce the simulation results with the advantage of about 3dB from this algorithm application. Besides, the burst-error correction procedure by the non-binary Reed-Solomon encoder/decoder with various schemes in the discrete communication channel is being considered.

Conclusion of the article gives the simulated method assessment with plots and comments on the bit errors probability dependence on the Es/N0, its disalignment range, as well as analysis of the matrix interleaver depth. A system communication model including the Gilbert channel in conjunction with the AWGN is proposed. This work allows assessing the effectiveness of solutions on the package error control under conditions of Gaussian noise.


Keywords:

discrete channel, burst-errors channel, Gilbert model, probability scheme, interleaver, error-correction codes, bit-error rate

References

  1. Fink L.M. Teoriya peredachi diskretnykh soobshchenii (Theory of discrete message transmission), Moscow, Sovetskoe radio, 1975, 400 p.
  2. Gallager R. Teoriya informatsii i nadezhnaya svyaz’ (Theory of information and reliable communications), Moscow, Sovetskoe radio, 1974, 720 p.
  3. Pavlov A.A., Romanenko Yu.A., Tsar’kov A.N. et al. Radiotekhnika, 2021, vol. 85, no. 7, pp. 140-150. DOI 10.18127/j00338486-202107-18.
  4. Blokh E.L., Popov O.V., Turin V.Ya. Modeli istochnikov oshibok v kanalakh peredachi tsifrovoi informatsii (Error models for digital Information transmission channels), Moscow, Svyaz’, 1971, 312 p.
  5. Tanygin M.O., Akhmad A.A.A., Vlasova A.O. V Vserossiiskaya nauchno-prakticheskaya konferentsiya «Infokommunikatsii i kosmicheskie tekhnologii: sostoyanie, problemy i puti resheniya»: sbornik statei. Kursk, Yugo-Zapadnyi gosudarstvennyi universitet, 2021, pp. 358-362.
  6. Shevchenko V.A. Izvestiya Instituta inzhenernoi fiziki, 2019, no. 2(52), pp. 26-31.
  7. Veresova A.M., Ovchinnikov A.A. XXIII mezhdunarodnaya nauchnaya konferentsiya «Volnovaya elektronika i infokommunikatsionnye sistemy»: sbornik statei. Saint-Petersburg, Sankt-Peterburgskii gosudarstvennyi universitet aerokosmicheskogo priborostroeniya, 2020, pp. 176-182.
  8. Ovchinnikov A.A., Fominykh A.A. XXIV Mezhdunarodnaya nauchnaya konferentsiya «Volnovaya elektronika i infokommunikatsionnye sistemy»: sbornik statei. Saint-Petersburg, Sankt-Peterburgskii gosudarstvennyi universitet aerokosmicheskogo priborostroeniya, 2021, pp. 132-138.
  9. Dzhumkov V.V., Mal’tsev G.N. Informatsionno-upravlyayushchie sistemy, 2020, no. 4, pp. 78-86.
  10. Kruk E.A., Ovchinnikov A.A. Informatsionno-upravlyayushchie sistemy, 2016, no. 1 (80), pp. 80-87.
  11. Ovchinnikov A.A., Veresova A.M. XXV Mezhdunarodnaya nauchnaya konferentsiya «Volnovaya elektronika i infokommunikatsionnye sistemy»: sbornik statei. Saint-Peterburg, Sankt-Peterburgskii gosudarstvennyi universitet aerokosmicheskogo priborostroeniya, 2022, pp. 71-75.
  12. McCullough, H. Richard, The binary regenerative channel, Bell System Technical Journal, 1968, vol. 47(8), pp. 1713-1735.
  13. Shevtsov A.V., Zhurbenko P.V. Vestnik Morskogo gosudarstvennogo universiteta, 2016, no. 75, pp. 137-143.
  14. Mal’tsev G.N., Dzhumkov V.V. Informatsionno upravlyayushchie sistemy, 2013, no. 1(62), pp. 27-33.
  15. C. Kim, J. -W. Kim, J. -S. No. New Design of Error Control Codes Resilient to Single Burst Error or Two Random Bit Errors Using Constacyclic Codes, IEEE Access, 2022, vol. 10, pp. 131101-131108, DOI: 10.1109/ACCESS.2022.3229427.
  16. W. Bennett, F. Froehlich. Some results on the effectiveness of error-control procedures in digital data transmission, IRE Transactions on Communications Systems, 1961, no. 9, pp. 58-65.
  17. Kvashennikov V.V., Bugakov I.A., Kuzin A.V. Izvestiya Instituta inzhenernoi fiziki, 2020, no. 4(58), pp. 11-16.
  18. Ovchinnikov A.A., Veresova A.M. Pervaya Vserossiiskaya nauchnaya konferentsiya «Obrabotka, peredacha i zashchita informatsii v komp’yuternykh sistemakh»: sbornik trudov. Saint-Petersburg, Sankt-Peterburgskii gosudarstvennyi universitet aerokosmicheskogo priborostroeniya, 2020, pp. 193-196. DOI: 10.31799/978-5-8088-1452-3-2020-1-193-196.
  19. Melent’ev O.G., Shevnina I.E. Zhurnal nauchnykh publikatsii aspirantov i doktorantov, 2008, no. 8, pp. 243–246.
  20. Melent’ev O.G. Peredacha dannykh po kanalam s gruppiruyushchimisya oshibkami: monografiya (Data transmission over channels with burst errors), Novosibirsk, Sibirskii gosudarstvennyi universitet telekommunikatsii i informatiki, 2005, 252 p.
  21. Romanenko D.M., Kudlatskaya M.F., Bel’kevich R.I. XXV Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Sovremennye sredstva svyazi»: materialy konferentsii. Minsk, Belorusskaya gosudarstvennaya akademiya svyazi, 2020, pp. 211-213.
  22. C.C. Trinca, C.D. De Albuquerque, R.P. Junior, J.C. Interlando, A.A. De Andrade and R. A. Watanabe. New Quantum Burst-Error Correcting Codes from Interleaving Technique, GLOBECOM 2022, 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022, pp. 5243-5248. DOI: 10.1109/GLOBECOM48099.2022.10000761.
  23. Bogdanov A.S., Shevtsov V.A. Trudy MAI, 2011, no. 46. URL: https://trudymai.ru/eng/published.php?ID=26041
  24. Bogdanov A.S., Shevtsov V.A. Trudy MAI, 2015, no. 84. URL: https://trudymai.ru/eng/published.php?ID=63136
  25. Borodin V.V., Petrakov A.M., Shevtsov V.A. Trudy MAI, 2018, no. 100. URL: https://trudymai.ru/eng/published.php?ID=93398
  26. S. Jihwan, H.K. Lee. Burst Error Correction for Convolutional Code Concatenated with Hamming code with a block interleaver, 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 2020, pp. 531-533. DOI: 10.1109/ICAIIC48513.2020.9065198.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход