To the question of prediction of the endurance limit of threaded parts with surface hardening


DOI: 10.34759/trd-2023-129-03

Аuthors

Pismarov A. V.

S. P. Korolev Rocket and Space Corporation «Energia», 4A Lenin Street, Korolev, Moscow area, 141070, Russia

e-mail: andrei_pismarov@mail.ru

Abstract

A review of the literature was carried out in order to study the state of the problem of predicting the endurance limit of threaded parts. Smooth parts and parts with stress concentrators are considered. An analysis of the destruction of threaded parts (bolts, studs, etc.) experiencing alternating loads during operation shows that, in general, the destruction of threaded parts is of a fatigue nature. The influence of surface hardening of threaded parts by methods of surface plastic deformation has been studied: to increase the service life, that is, to increase the life cycle during the operation of threaded parts at the stage of their manufacture, surface hardening methods are widely used. The maximum effect of their application is achieved under conditions of stress concentration. This is justified, since the destruction occurs in places where the prismatic geometry is violated. It has been established that surface hardening leads to the appearance of compressive residual stresses in the surface layer, which increase the endurance limit of threaded parts. Methods for predicting the endurance limit of threaded parts are considered, their accuracy and reliability are assessed. A separate block considers the issues of modeling the stress-strain state of a loaded threaded part in order to determine the endurance limit by numerical methods. At the stage of machine design, it is important to be able to evaluate the effect of the applied methods of surface plastic deformation. Based on the review, it is concluded that it is necessary to develop a method for predicting the fatigue limit of hardened threaded parts, taking into account manufacturing technology, tightening forces, operating conditions and other factors.

Keywords:

imbalance, asymmetry, vibration protection, symmetrical scheme, three-coordinate system, kinematics

References

  1. Ivanov S.I., Pavlov V.F., Minin B.V., Kirpichev V.A., Kocherov E.P., Golovkin V.V. Ostatochnye napryazheniya i soprotivlenie ustalosti vysokoprochnykh rez’bovykh detalei (Residual stresses and fatigue resistance of high-strength threaded parts), Samara, Izd-vo SamNTs RAN, 2015, 170 p.
  2. Potekhin R.N. Mezhdunarodnaya nauchnaya konferentsiya «Reshetnevskie chteniya», sbornik trudov, Krasnoyarsk, SibGAU, 2013, pp. 433-434.
  3. Vasil’ev V.Yu., Galagan G.E., Semin A.E., Shapkin V.S. Nauchnyi vestnik MGTU GA, 2007, no. 119, pp. 50-56.
  4. Polonik E.N., Surenskii E.A., Fedotov A.A. Trudy MAI, 2017, no. 92. URL: http://trudymai.ru/eng/published.php?ID=76755
  5. Grigorenko V.B., Morozova L.V., Vinogradov S.S. Trudy VIAM, 2018, no. 4 (64), pp. 66-74.
  6. Abramov V.V. Utochnenie mekhanicheskikh metodov opredeleniya ostatochnykh napryazhenii (Refinement of mechanical methods for determining residual stresses), Perm’, Dom NTO, 1984, pp. 70-74.
  7. Balter M.A. Uprochnenie detalei mashin (Hardening of machine parts), Moscow, Mashinostroenie, 1987, 184 p.
  8. Babei Yu.I., Berezhnitskaya M.F. Metody opredeleniya ostatochnykh napryazhenii pervogo roda (Methods for determining residual stresses of the first kind), L’vov, FMI AN USSR, 1980, 64 p.
  9. Birger I.A. Ostatochnye napryazheniya (Residual stresses), Moscow, Mashgiz, 1963, 232 p.
  10. Glikman L.A. Trudy Leningradskogo inzhenerno-ekonomicheskogo instituta, 1960, no. 30, pp. 58-98.
  11. Promptov A.I. Tekhnologicheskie ostatochnye napryazheniya (Technological residual stresses), Irkutsk, IPI, 1980, 220 p.
  12. Bukatyi S.A. Issledovanie deformatsii detalei, voznikayushchikh posle obrabotki poverkhnosti (Study of the deformations of parts that occur after surface treatment): dissertation of PhD. Kuibyshev, KPTI, 1979, 167 p.
  13. Vakulyuk V.S. Opredelenie ostatochnykh napryazhenii v shlitsevykh detalyakh (Determination of residual stresses in splined parts): abstract of the thesis of PhD, Moscow, 1983, 15 p.
  14. Grigor’eva I.V. Opredelenie ostatochnykh napryazhenii v tsilindricheskikh detalyakh (Determination of residual stresses in cylindrical parts): abstract of the thesis of PhD, Kuibyshev, KPTI, 1978, 23 p.
  15. Ivanov S.I. Opredelenie ostatochnykh napryazhenii. Diss......dokt. tekhn. nauk. — Kuibyshev: KPTI, 1972. — 258 s.
  16. Lavrov V.F. Issledovanie vliyaniya ostatochnykh napryazhenii i naklepa na ustalostnuyu prochnost’ v usloviyakh kontsentratsii napryazhenii (Investigation of the influence of residual stresses and work hardening on fatigue strength under conditions of stress concentration): dissertation PhD. Kuibyshev, KuAI, 1975, 120 p.
  17. Freidin E.I. Issledovanie ostatochnykh napryazhenii v rez’be boltov aviatsionnykh GDT (Investigation of residual stresses in the thread of bolts of aircraft gas turbine engines): abstract dissertation PhD. Kuibyshev, KuAI, 1981, 17 p.
  18. Semenova O.Yu. Razrabotka metodiki prognozirovaniya predela vynoslivosti poverkhnostno uprochnennykh polykh tsilindricheskikh detalei s kontsentratorami napryazhenii (Development of a Method for Predicting the Endurance Limit of Surface-Hardened Hollow Cylindrical Parts with Stress Concentrators): dissertation of PhD. Samara, SGAU im. S.P. Koroleva, 2011, 112 p.
  19. Abrobov V.V. Ostatochnye napryazheniya i deformatsii v metallakh (Residual stresses and strains in metals), Moscow, Mashgiz, 1963, 28 p.
  20. Nyashin Yu.I., Pozdeev A.D. Ostatochnye napryazheniya. Teoriya i prilozhenie. (Residual stresses. Theory and application), Moscow, Nauka, 1982, 109 p.
  21. Mikhailov O.N., Shalaev Yu.P. Ostatochnye napryazheniya i ustalost’ shpilek M36*3 iz stali 40Kh. Ostatochnye napryazheniya v zagotovkakh i detalyakh krupnykh mashin (Residual stresses and fatigue of M36 * 3 studs made of steel 40X. Residual stresses in blanks and parts of large machines). Sverdlovsk, NII tyazhelogo mashinostroeniya Uralmashzavoda, 1971, pp. 165-180.
  22. Tochilkin A.A., Iosilevich G.D., Petrikov V.G. Issledovanie tekhnologii nakatyvaniya tochnoi rez’by kruglymi rolikami (Investigation of the technology of rolling precise threads with round rollers), Moscow, Mashinostroenie, 1978, 24 p.
  23. Ivanov S.I., Pavlov V.F., Konovalov G.V., Minin B.V. Tekhnologicheskie ostatochnye napryazheniya i soprotivlenie ustalosti aviatsionnykh rez’bovykh detalei (Technological residual stresses and fatigue resistance of aircraft threaded parts), Мoscow, B.I., 1992, 191 p.
  24. Podzen A.V. Tekhnologicheskie ostatochnye napryazheniya (Technological residual stresses), Moscow, Mashinostroenie, 1973, 216 p.
  25. Kirpichev V.A, Bukatyi A.S., Filatov A.P., Chirkov A.V. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2011, vol. 15, no. 4 (44), pp. 81-85.
  26. Ivanov S.I., Shatunov M.P., Krasota V.K., Freidin E.I. Vestnik mashinostroeniya, 1982, no. 11, pp. 36-38.
  27. Ovseenko A.N., Klauch D.N., Nosov D.P., Ponomarev A.A., Kotov I.V., Terekhov V.M. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 4, pp. 55-59.
  28. Pesin M.P. Ekspozitsiya Neft’ Gaz, 2018, no. 4 (64), pp. 67-69.
  29. Trofimov V.V., Yablokova N.A. Nauchno-tekhnicheskie vedomosti SPbGPU. Seriya: Nauka i obrazovanie, 2011, no. 1, pp. 112-117.
  30. Zaides S.A., Nguen Van Khuan. Izvestiya vysshikh uchebnykh zavedenii. Chernaya metallurgiya, 2017, no. 2, pp. 109-115.
  31. Sazanov V.P., Chirkov A.V., Semenova O.Yu., Ivanova A.V. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki, 2012, no. 1 (33), pp. 106-114.
  32. Sazanov V.P. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. S.P. Koroleva, 2012, no. 3 (34), pp. 158-161.
  33. Barsoum Z., Barsoum I. Residual stress effects on fatigue life of welded structures using LEFM, Engineering Failure Analysis, 2009, no. 16, pp. .449-467. DOI:10.1016/j.engfailanal.2008.06.017
  34. Melicher R., Meško J., Novák P., Žmindák M. Residual stress simulation of circumferential welded joints, Applied and Computational Mechanics, 2007, vol. 1, no. 2, pp. 541-548.
  35. Parks D.M. The virtual crack extension method for nonlinear material behavior, Computer Methods in Applied Mechanics and Engineering, 1977, vol. 12, issue 3, pp. 353–364. DOI: 10.1016/0045-7825(77) 90023-8
  36. Radaj D. Welding residual stresses and distortion, Berlin, Springer Verlag, 2003.
  37. Roger F., Traidia A. Modeling Residual Stresses in Arc Welding, Proceedings of the COMSOL 2010, Boston (2015).
  38. Ivanychev D.A. Trudy MAI, 2019, no. 106. URL: https://trudymai.ru/eng/published.php?ID=105643
  39. Sakhvadze G.Zh., Sakhvadze G.G. Problemy mashinostroeniya i avtomatizatsii, 2021, no. 3, pp. 56-65. DOI: 10.52261/02346206_2021_3_56
  40. Kondatenko L.A., Mironova L.I. Problemy mashinostroeniya i avtomatizatsii, 2022, no. 1, pp. 70-76. DOI: 10.52261/02346206_2022_1_70.
  41. Mikushev N.N., Kas’yanov S.A., Sazanov V.P. Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya «XIII Korolevskie chteniya»: sbornik trudov. Samara, SGAU im. akademika S.P. Koroleva, 2015, pp. 395-396.
  42. Zlobin A.S. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2015, vol. 14, no. 4, pp. 118-125.
  43. Khramova D.A., Egorova D.A., Zhilin Ya.D. Politekhnicheskii molodezhnyi zhurnal, 2018, no. 1 (18), pp. 1-11. DOI: 10.18698/2541-8009-2018-1-231
  44. Karatushin S.I., Khramova D.A., Bil’dyuk N.A. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 2017, no. 6, pp. 28–34. DOI: 10.18698/0536-1044-2017-6-28-34
  45. Sazanov V.P., Chirkov A.V., Semenova O.Yu., Ivanova A.V. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki, 2012, № 1 (33), pp. 106-114.
  46. Aleksandrov A.A. Modelirovanie termicheskikh ostatochnykh napryazhenii pri proizvodstve malozhestkikh detalei (Modeling of thermal residual stresses in the production of low-rigid parts): dissertation of PhD. Irkutsk, Buryatskii gosudarstvennyi universitet, 2016, 165 p.
  47. Bagmutov V.P., Denisevich D.S., Zakharov I.N., Romanenko M.D., Fastov S.A. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mekhanika. 2019, no. 3, pp. 112-124. DOI: 10.15593/perm.mech/2019.3.12
  48. Pleshanova Yu.A. Modelirovanie ostatochnykh napryazhenii v detalyakh mashin (Modeling of residual stresses in machine parts): dissertation of PhD. Saint-Petersburg, Sankt-Peterburgskii politekhnicheskii universitet, 2016, 144 p.
  49. Masoudi Nejad R., Shariati M., Farhangdoost K. Three-dimensional finite element simulation of residual stresses in uic60 rails during the quenching process, Thermal Science, 2017, no. 21 (3), pp. 1301-1307. DOI: 10.2298/TSCI151006013M
  50. Stacey A., Barthelemy J-Y., Leggatt R.H. and Ainsworth R.A. Incorporation of residual stresses into the SINTAP defect assessment procedure, Engineering Fracture Mechanics, 2000, vol. 67, pp. 573-611. DOI:10.1016/S0013-7944(00)00075-8
  51. Kayser W., Bezold A., Broeckmann C. Simulation of residual stresses in cemented carbides, International Journal of Refractory Metals and Hard Materials, 2016. DOI:10.1016/j.ijrmhm.2016.04.001
  52. Cao J., Gharghouri M.A., Nash, P. Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates, Journal of Materials Processing Technology, 2016, vol. 237 (10), pp. 409–419. DOI:10.1016/j.jmatprotec.2016.06.032

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход