Calculation of the flow of a viscous fluid near an inlet and outlet


DOI: 10.34759/trd-2023-129-10

Аuthors

Kaurov P. V.

Saint Petersburg State University of Industrial Technologies and Design, Saint Petersburg, Russia

e-mail: pucmo@mail.ru

Abstract

The article considered and solved the problem on the viscous fluid flow between the source and the drain at small Reynolds numbers. It presents the analytical solution of the Stocks equation when bipolar coordinates utilization. The sought-after function is represented as a sum of the two components, first of which satisfies the boundary conditions, while the application of the other component satisfies the initial Stocks equation in the bipolar system of coordinates. Approximation of the first component the flow function by the simple dependence allows reducing the initial equation with variable coefficients to the three ordinary differential expressions with constant coefficients relative to the second component of the flow function. Analytical solution is presented for the three ordinary differential equations. The examples of the computed flow function in the dimensionless form for various distances between the source and the drain are presented. Comparison of the flow functions calculated values with the experimental data from the literature sources demonstrates reasonable agreement.

Keywords:

laminar flow, viscous fluid, stream function, Stokes equations, bipolar coordinates

References

  1. Leibenzon L.S. Gidrodinamicheskaya teoriya smazki (Hydrodynamic theory of lubrication), Moscow, GTTI, 1934, 579 p.
  2. Durst F. Fluid Mechanics: An Introduction to the Theory of Fluid Flows. Heidelberg: Springer Berlin, 2022. 818 p. URL: https://doi.org/10.1007/978-3-662-63915-3
  3. Longo S., Tanda M.G., Chiapponi L. Problems in Hydraulics and Fluid Mechanics. Cham: Springer Cham, 2021. 395 p. URL: https://doi.org/10.1007/978-3-030-51387-0
  4. Zhukovskii N.E., Chaplygin S.A. Trudy Otdeleniya fizicheskikh nauk obshchestva lyubitelei estestvoznaniya, 1906, vol. 1, no. 13, pp. 24–33.
  5. Korovchinskii M.V. Teoreticheskie osnovy raboty podshipnikov skol’zheniya (Theoretical foundations of the operation of plain bearings), Moscow, Mashgiz, 1959, 403 p.
  6. Ballal B.Y., Rivlin R.S. Flow of a Newtonian fluid between eccentric rotating cylinders: inertial effects, Archive for Rational Mechanics and Analysis, 1976, vol. 62, no. 3, pp. 237–294. URL: https://doi.org/10.1007/BF00280016
  7. Kazakova A.O. Application of bipolar coordinates to the analysis of the structure of viscous fluid flow between two rotating cylinders, Journal of Physics: Conference Series, 2020, vol. 1679, pp. 022068. DOI: 10.1088/1742-6596/1679/2/022068
  8. Petrov A.G., Kazakova A.O. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki, 2019, no. 6 (59), pp. 1063–1082. DOI: 10.1134/S0044466919060097
  9. Kaurov P.V. Vestnik Bashkirskogo universiteta, 2020, no. 3 (25), pp. 468–471. DOI: 10.33184/bulletin-bsu-2020.3.2
  10. Monakhov A.A., Kotelkin V.D. Izvestiya RAN. Mekhanika zhidkosti i gaza, 2017, no. 3, pp. 81–87. DOI: 10.7868/S0568528117030094
  11. Kazakova A.O., Petrov A.G. Izvestiya RAN. Mekhanika zhidkosti i gaza, 2016, no. 3, pp. 16–25. DOI: 10.17868/S0568528116030087
  12. Kazakova A.O. Nauchno-tekhnicheskii vestnik Povolzh’ya, 2018, no. 4, pp. 105–108. DOI: 10.24153/2079-5920-2018-8-4-105-108
  13. Keh H.J., Horng K.D., Kuo J. Boundary effects on electrophoresis of colloidal cylinders, Journal of Fluid Mechanics, 1991, vol. 231, pp. 211–228. DOI: 10.1017/S0022112091003373
  14. Wang L.J., Keh H.J. Diffusiophoresis of a colloidal cylinder in an electrolyte solution near a plane wall, Microfluid Nanofluid, 2015, vol. 19, pp. 855–865. DOI: 10.1007/s10404-015-1612-2
  15. Gyagyaeva A.G., Kondratov D.V., Mogilevich L.I. Trudy MAI, 2021, no. 121. URL: https://trudymai.ru/eng/published.php?ID=162650. DOI: 10.34759/trd-2021-121-06
  16. Blinkova O.V., Kondratov D.V. Trudy MAI, 2020, no. 110. URL: http://trudymai.ru/eng/published.php?ID=112935. DOI: 10.34759/trd-2020-110-21
  17. Ageev R.V., Mogilevich L.I., Popov V.S., Popova A.A. Trudy MAI, 2014, no. 78. URL: https://trudymai.ru/eng/published.php?ID=53466
  18. Prandtl’ L. Gidroaeromekhanika (Hydroaeromechanics), Izhevsk, NITS «Regulyarnaya i khaoticheskaya dinamika», 2000, 576 p.
  19. Chen J.T., Tsai M.H., Liu C.S. Conformal Mapping and Bipolar Coordinate for Eccentric Laplace Problems, Computer Applications in Engineering Education, 2009, vol. 17, no. 3, pp. 314–322. DOI: 10.1002/cae.20208
  20. Chen J.T., Shieh H.C., Lee Y.T. Bipolar coordinates, image method and the method of fundamental solutions for Green’s functions of Laplace problems containing circular boundaries, Engineering Analysis with Boundary Elements. 2011, vol. 35, no. 2, pp. 236–243. DOI: 10.1016/J.ENGANABOUND.2010.08.008
  21. Uflyand Ya.S. Bipolyarnye koordinaty v teorii uprugosti (Bipolar coordinates in the theory of elasticity), Moscow — Leningrad, GITTL, 1950, 232 p.
  22. Fassler A. Fast Track to Differential Equations. Cham: Springer Cham, 2021, 221 p. URL: https://doi.org/10.1007/978-3-030-83450-0
  23. Magnus R. Essential Ordinary Differential Equations. Cham: Springer Cham, 2023, 283 p. URL: https://doi.org/10.1007/978-3-031-11531-8

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход