Calculation of the flow of a viscous fluid near an inlet and outlet
DOI: 10.34759/trd-2023-129-10
Аuthors
Saint Petersburg State University of Industrial Technologies and Design, Saint Petersburg, Russia
e-mail: pucmo@mail.ru
Abstract
The article considered and solved the problem on the viscous fluid flow between the source and the drain at small Reynolds numbers. It presents the analytical solution of the Stocks equation when bipolar coordinates utilization. The sought-after function is represented as a sum of the two components, first of which satisfies the boundary conditions, while the application of the other component satisfies the initial Stocks equation in the bipolar system of coordinates. Approximation of the first component the flow function by the simple dependence allows reducing the initial equation with variable coefficients to the three ordinary differential expressions with constant coefficients relative to the second component of the flow function. Analytical solution is presented for the three ordinary differential equations. The examples of the computed flow function in the dimensionless form for various distances between the source and the drain are presented. Comparison of the flow functions calculated values with the experimental data from the literature sources demonstrates reasonable agreement.
Keywords:
laminar flow, viscous fluid, stream function, Stokes equations, bipolar coordinatesReferences
- Leibenzon L.S. Gidrodinamicheskaya teoriya smazki (Hydrodynamic theory of lubrication), Moscow, GTTI, 1934, 579 p.
- Durst F. Fluid Mechanics: An Introduction to the Theory of Fluid Flows. Heidelberg: Springer Berlin, 2022. 818 p. URL: https://doi.org/10.1007/978-3-662-63915-3
- Longo S., Tanda M.G., Chiapponi L. Problems in Hydraulics and Fluid Mechanics. Cham: Springer Cham, 2021. 395 p. URL: https://doi.org/10.1007/978-3-030-51387-0
- Zhukovskii N.E., Chaplygin S.A. Trudy Otdeleniya fizicheskikh nauk obshchestva lyubitelei estestvoznaniya, 1906, vol. 1, no. 13, pp. 24–33.
- Korovchinskii M.V. Teoreticheskie osnovy raboty podshipnikov skol’zheniya (Theoretical foundations of the operation of plain bearings), Moscow, Mashgiz, 1959, 403 p.
- Ballal B.Y., Rivlin R.S. Flow of a Newtonian fluid between eccentric rotating cylinders: inertial effects, Archive for Rational Mechanics and Analysis, 1976, vol. 62, no. 3, pp. 237–294. URL: https://doi.org/10.1007/BF00280016
- Kazakova A.O. Application of bipolar coordinates to the analysis of the structure of viscous fluid flow between two rotating cylinders, Journal of Physics: Conference Series, 2020, vol. 1679, pp. 022068. DOI: 10.1088/1742-6596/1679/2/022068
- Petrov A.G., Kazakova A.O. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki, 2019, no. 6 (59), pp. 1063–1082. DOI: 10.1134/S0044466919060097
- Kaurov P.V. Vestnik Bashkirskogo universiteta, 2020, no. 3 (25), pp. 468–471. DOI: 10.33184/bulletin-bsu-2020.3.2
- Monakhov A.A., Kotelkin V.D. Izvestiya RAN. Mekhanika zhidkosti i gaza, 2017, no. 3, pp. 81–87. DOI: 10.7868/S0568528117030094
- Kazakova A.O., Petrov A.G. Izvestiya RAN. Mekhanika zhidkosti i gaza, 2016, no. 3, pp. 16–25. DOI: 10.17868/S0568528116030087
- Kazakova A.O. Nauchno-tekhnicheskii vestnik Povolzh’ya, 2018, no. 4, pp. 105–108. DOI: 10.24153/2079-5920-2018-8-4-105-108
- Keh H.J., Horng K.D., Kuo J. Boundary effects on electrophoresis of colloidal cylinders, Journal of Fluid Mechanics, 1991, vol. 231, pp. 211–228. DOI: 10.1017/S0022112091003373
- Wang L.J., Keh H.J. Diffusiophoresis of a colloidal cylinder in an electrolyte solution near a plane wall, Microfluid Nanofluid, 2015, vol. 19, pp. 855–865. DOI: 10.1007/s10404-015-1612-2
- Gyagyaeva A.G., Kondratov D.V., Mogilevich L.I. Trudy MAI, 2021, no. 121. URL: https://trudymai.ru/eng/published.php?ID=162650. DOI: 10.34759/trd-2021-121-06
- Blinkova O.V., Kondratov D.V. Trudy MAI, 2020, no. 110. URL: http://trudymai.ru/eng/published.php?ID=112935. DOI: 10.34759/trd-2020-110-21
- Ageev R.V., Mogilevich L.I., Popov V.S., Popova A.A. Trudy MAI, 2014, no. 78. URL: https://trudymai.ru/eng/published.php?ID=53466
- Prandtl’ L. Gidroaeromekhanika (Hydroaeromechanics), Izhevsk, NITS «Regulyarnaya i khaoticheskaya dinamika», 2000, 576 p.
- Chen J.T., Tsai M.H., Liu C.S. Conformal Mapping and Bipolar Coordinate for Eccentric Laplace Problems, Computer Applications in Engineering Education, 2009, vol. 17, no. 3, pp. 314–322. DOI: 10.1002/cae.20208
- Chen J.T., Shieh H.C., Lee Y.T. Bipolar coordinates, image method and the method of fundamental solutions for Green’s functions of Laplace problems containing circular boundaries, Engineering Analysis with Boundary Elements. 2011, vol. 35, no. 2, pp. 236–243. DOI: 10.1016/J.ENGANABOUND.2010.08.008
- Uflyand Ya.S. Bipolyarnye koordinaty v teorii uprugosti (Bipolar coordinates in the theory of elasticity), Moscow — Leningrad, GITTL, 1950, 232 p.
- Fassler A. Fast Track to Differential Equations. Cham: Springer Cham, 2021, 221 p. URL: https://doi.org/10.1007/978-3-030-83450-0
- Magnus R. Essential Ordinary Differential Equations. Cham: Springer Cham, 2023, 283 p. URL: https://doi.org/10.1007/978-3-031-11531-8
Download