Distribution of residual stresses in bottom of thread after advance surface plastic deformation


DOI: 10.34759/trd-2023-131-07

Аuthors

Sazanov V. P.*, Kirpichev V. A., Pismarov A. V.**

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: sazanow@mail.ru
**e-mail: andrei_pismarov@mail.ru

Abstract

The article presents the results of computing-and-experimental study of the advance surface plastic deforming impact on stress fatigue strength of the parts with M16´2 metric thread, produced from the 30HGSA and 40X structural steels. The surface of cylindrical workpieces was hardened by rolling on the roller work-tool prior to the thread cutting. Computations of the residual stresses distribution in the lest sections of the thread vees were performed by both analytical and finite element modeling methods. It was found that that these results demonstrate rather high convergence in the thread vees slightly removed from the start of the threaded portion of the part. Obviously this is associated with the fact that an analytical solution of the residual stresses distribution was performed at a quite long distance from the rim zone. Finite element modeling and necessary computational volume were performed employing the PARTRAN/NASTRAN software complex. Finite element models of the smooth cylindrical and threaded pieces were developed in the axisymmetrical setting, and residual stress-strain state modeling was conducted by the thermoelastisity method using initial deformations. The squeezing residual stresses impact on the fatigue resistance was being determined through the endurance limit increment by the mean integral stresses criterion. Calculating increments of the endurance limits were compared with their experimental values obtained while fatigue tests of hardened and non-hardened threaded pieces at the rotational bending in the case of the symmetrical cycle (30HGSA) and stretching in the case of asymmetrical cycle (40X). Accounting for the close increments values of the endurance limits at bending and limiting amplitude of the cycle while bending the important inference on the stretching substitution by bending while fatige test conducting is confirmed.

Keywords:

residual stresses, advanced surface plastic deformation, rolling rollers, endurance limit, finite element modeling, thermoelasticity method, mean integral residual stresses, fatigue tests

References

  1. Birger I.A. Ostatochnye napryazheniya (Residual stresses), Moscow, Mashgiz, 1963, 232 p.
  2. Dobroslavskii A.V., Ivanov S.D. Problemy mashinostroeniya i avtomatizatsii, 2014, no. 1, pp. 120-125.
  3. Babaitsev A.V., Rabinskii L.N., Yan Naing Min. Trudy MAI, 2021, no. 119. URL: https://trudymai.ru/eng/published.php?ID=159788. DOI: 10.34759/trd-2021-119-10
  4. Ivanov S.I. K opredeleniyu ostatochnykh napryazhenii v tsilindre metodom kolets i polosok. Ostatochnye napryazheniya. (To the determination of residual stresses in the cylinder by the method of rings and strips. Residual stresses.), Kuibyshev, KuAI, 1971, vol. 53, pp. 32-42.
  5. Ivanov S.I., Grigor’eva I.V. K opredeleniyu ostatochnykh napryazhenii v tsilindre metodom snyatiya chasti poverkhnosti. Voprosy prochnosti elementov aviatsionnykh konstruktsii (On determination of residual stresses in a cylinder by removing a part of surface. Problems of aircraft constructions elements strength), Kuibyshev, KuAI, 1971, vol. 48, pp. 179-183.
  6. Ivanov S.I., Pavlov V.F., Minin B.V., Kirpichev V.A., Kocherov E.P., Golovkin V.V. Ostatochnye napryazheniya i soprotivlenie ustalosti vysokoprochnykh rez’bovykh detalei (Residual stresses and fatigue resistance of high-strength threaded parts), Samara, Izd-vo SNTs RAN, 2015, 170 p.
  7. Ivanov S.I., Filatov A.P. Vestnik mashinostroeniya, 1989, no. 1, pp. 23-24.
  8. Sazanov V.P. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2012, no. 3 (34), pp. 158-161.
  9. Sazanov V.P., Kirpichev V.A., Vakulyuk V.S., Pavlov V.F. Vestnik Ufimskogo gosudarstvennogo aviatsionno-tekhnicheskogo universiteta, 2015, vol. 19, no. 2 (68), pp. 35-40.
  10. Barsoum Z., Barsoum I. Residual stress effects on fatigue life of welded structures using LEFM, Engineering Failure Analysis, 2008, no. 23 (2), pp. 449-467. DOI: 10.1154/1.2951862
  11. Melicher R., Meško J., Novák P., Žmindák M. Residual stress simulation of circumferential welded joints, Applied and Computational Mechanics, 2007, vol. 1, no. 2, pp. 541-548
  12. Parks D.M. The virtual crack extension method for nonlinear material behavior, Computer Methods in Applied Mechanics and Engineering, 1977, vol. 12, issue 3, pp. 353–364. DOI: 10.1016/0045-7825(77) 90023-8
  13. Radaj D. Welding residual stresses and distortion, Berlin, Springer Verlag, 2003.
  14. Roger F., Traidia A. Modeling Residual Stresses in Arc Welding, Proceedings of the COMSOL, 2010, Boston (2015).
  15. Ivanychev D.A. Trudy MAI, 2019, no. 106. URL: https://trudymai.ru/eng/published.php?ID=105643
  16. Pavlov V.F., Kirpichev V.A., Vakulyuk V.S. Prognozirovanie soprotivleniya ustalosti poverkhnostno uprochnennykh detalei po ostatochnym napryazheniyam (The prediction of surface hardened parts fatigue resistance by residual stresses), Samara, Izd-vo SNTs RAN, 2012, 125 p.
  17. Berezin A.V., Zhirkevich V.Yu., Kulemin A.V., Nesterenko B.G., Klemyashov A.G. Problemy mashinostroeniya i avtomatizatsii, 2018, no. 1, pp. 69-86.
  18. Pavlov V.F. Izvestiya vuzov. Mashinostroenie, 1986, no. 8, pp. 29-32.
  19. Pavlov V.F. Izvestiya vuzov. Mashinostroenie, 1988, no. 8, pp. 22-25.
  20. Zavoichinskaya E.B. Problemy mashinostroeniya i avtomatizatsii, 2016, no. 1, pp. 98-108.
  21. Kudryavtsev P.I. Nerasprostranyayushchiesya ustalostnye treshchiny (Nonpropagating fatigue cracks), Moscow, Mashinostroenie, 1982, 171 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход