Features of Mathematical Modeling and Validation of Computer Model of Physical Processes in the Porous Mesh Material of a Hydraulic Filter Element


Аuthors

Ivanov M. Y.1, 2*, Gorodnov A. O.3**, Laptev I. V.3***, Sidorenko N. Y.3****, Malahov A. S.1, Resh G. F.1

1. Military industrial corporation «NPO Mashinostroyenia», 33, Gagarina str., Reutov, Moscow region, 143966, Russia
2. Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia
3. Keldysh Research Centre, 8, Onezhskaya str., Moscow, 125438, Russia

*e-mail: vpk@vpk.npomash.ru
**e-mail: an.ol.gorodnov@gmail.com
***e-mail: laptev@kerc.msk.ru
****e-mail: sidorenikita@yandex.ru

Abstract

The paper considers the features of creating physical and mathematical model of spatial motion of viscous incompressible non-thermally conductive liquid in - a hydraulic filter element. Porous mesh materials are artificial porous media formed by several (more than two) flat sheets of metal grids, the fibers of which are rigidly interconnected. The relevance of adequate computer modeling of the functioning of the filter element is due to the need to develop a digital twin of hydraulic system containing such devices. Currently, Russian and foreign industrial enterprises are developing and using virtual analogues of physical processes, products and systems for the so-called predictive modeling of the development of processes and behavior of products and systems. This makes it possible to predict the nature of the features of the course of phenomena of various natures or the functioning of systems long before the occurrence of possible emergency situations throughout their entire life cycle. Based on the LOGOS Aero-Hydro engineering analysis system, theoretical method for determining the coefficient of hydraulic resistance of representative element (quasi-periodic cell) of porous mesh material of arbitrary configuration is proposed, implemented and confirmed in practice by solving the problem of liquid flowing around two-layer structure of the material. A computer model of virtual pouring tests of sample of porous mesh material has been developed, providing a relative error in determining the coefficient of hydraulic resistance of sample of porous mesh material of no more than 5%. The procedure for validating the computer model of nonstationary physical processes in the considered porous structure is described. Validation spill tests of porous mesh material sample confirmed the required level of adequacy and provided the required degree of accuracy of the computer model of the sample under study. The validation uses empirical data obtained from spillage tests of sample of porous mesh material. The simulation results supplement the fundamental theory of studying the hydraulic properties of porous permeable materials. The possibility of using the classical phenomenological Darcy-Forchheimer model of a porous mesh material sample in development of digital twins of pneumohydraulic systems has been confirmed.

Keywords:

computer model, hydraulic resistance coefficient, control volume method, porous mesh material

References

  1. Tsarev M.V., Andreev Yu.S. Izvestiya vuzov. Priborostroenie, 2021, vol. 64, pp. 517–531. DOI: 10.17586/0021-3454-2021-64-7-517-531

  2. Minakov E.P., Privalov A.E., Bugaichenko P.Yu. Trudy MAI, 2023, no. 131. URL: https://www.trudymai.ru/eng/published.php?ID=175925. DOI: 10.34759/trd-2023-131-19

  3. Gusev P.Yu. Trudy MAI, 2018, no. 103. URL: https://www.trudymai.ru/eng/published.php?ID=101190

  4. Belevitin A.A., Borodulya N.A., Ryzhkova V.G. Gazovaya promyshlennost', 2021, no. 7, pp. 22–28.

  5. Ivanova Yu.P., Ivanov M.Yu., Buryak A.K. Matematicheskie modeli dinamicheskikh protsessov adsorbtsii i teplomassoperenosa v mnogokomponentnykh smesyakh (Mathematical Models of Dynamic Processes of Adsorption and Heat and Mass Transfer in Multicomponent Mixtures), Moscow, Izd-vo MGTU im. N.E. Baumana, 2022. 98 p.

  6. Ivanov M.Yu., Resh G.F. Theoretical Justification of Experimental Investigation of Gravity-Capillary Method for Gas-Liquid Mixtures Intake, Journal of Physics: Conference Series, 2019, vol. 1391, pp. 012079. DOI: 10.1088/1742-6596/1391/1/012079

  7. Aleksandrov L.G., Konstantinov S.B., Markov A.V., Platov I.V. Trudy MAI, 2022, no. 127. URL: https://www.trudymai.ru/eng/published.php?ID=170335. DOI: 10.34759/trd-2022-127-07

  8. Belov S.V. Poristye pronitsaemye materialy (Porous Permeable Materials), Moscow, Metallurgiya, 1987, 335 p.

  9. Ivanov M.Yu., Gorodnov A.O., Laptev I.V. et al. XLVIII Akademicheskie chteniya po kosmonavtike, posvyashchennye pamyati akademika S.P. Koroleva i drugikh vydayushchikhsya otechestvennykh uchenykh — pionerov osvoeniya kosmicheskogo prostranstva: sbornik tezisov. Moscow, Izd-vo MGTU im. N.E. Baumana, 2024.

  10. Gorodnov A.O., Laptev I.V., Sidorenko N.Yu. et al. Matematicheskoe modelirovanie i chislennye metody, 2023, no. 2, pp. 67–89.

  11. Armour J.C., Cannon J.N. Fluid Flow Through Woven Screens, AIChE Journal, 1968, vol. 14, no. 3, pp. 415–420. DOI: 10.1002/AIC.690140315

  12. LOGOS Aero-Gidro. Reshatel' zadach aero-, gidro-, gazodinamiki i akustiki. URL: https://logos-support.ru/logos/aero-hydro/

  13. Tannenberg I.D., Ramazanov R.F. Trudy MAI, 2016, no. 90. URL: https://www.trudymai.ru/eng/eng/published.php?ID=74873

  14. Landau L.D., Lifshits E.M. Teoreticheskaya fizika. Tom 6. Gidrodinamika (Theoretical Physics. Volume 6. Hydrodynamics), Moscow, Fizmatlit, 2001, 736 p.

  15. Menter F.R. Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows, AIAA 24th Fluid Dynamics Conference, July 6-9, 1993, Orlando, Florida, no. AIAA 93-2906, 22 p. DOI: 10.2514/6.1993-2906

  16. Moskalev P.V., Shitov V.V. Matematicheskoe modelirovanie poristykh struktur (Mathematical Modeling of Porous Structures), Moscow, FIZMATLIT, 2007, 120 p.

  17. Hicks R.E. Pressure Drop in Packed Beds of Spheres, Industrial & Engineering Chemistry Fundamentals, 1970, vol. 9, no. 3, pp. 500-502. DOI: 10.1021/I160035A032

  18. Versteeg H.K., Malalasekera W. An introduction to computational fluid dynamics. The finite volume method, England: Longman Scientific & Technical, 1995, 257 p.

  19. Ferziger J.H., Peric M., Street R.L. Computational Methods for Fluid Dynamics, Springer Nature Switzerland AG, 2020, 596 p.

  20. Lashkin S.V., Kozelkov A.S., Meleshkina D.P., Yalozo A.V., Tarasova N.V. Matematicheskoe modelirovanie, 2016, vol. 28, no. 6, pp. 64-76.

  21. Patankar S.V. Numerical Heat Transfer and Fluid Flow, New York, Hemisphere Publishing Corporation, 1980, 214 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход