Elastic ties in the formation of the structure and dynamics of mechanical systems under conditions of vibrational loads of a forceful nature


Аuthors

Eliseev A. V.1*, Kuznetsov N. K.1**, Mironov A. S.2***

1. Irkutsk National Research Technical University, 83, Lermontov str., Irkutsk, 664074, Russia
2. Irkutsk State Transport University (IrGUPS), 15, Chernyshevsky str., Irkutsk, 664074, Russia

*e-mail: eavsh@ya.ru
**e-mail: knik@istu.edu
***e-mail: art.s.mironov@mail.ru

Abstract

A methodology for accounting for additional kinematic links in the problems of dynamic states estimation, correction and formation of the technological and transport machines actuators, operating under conditions of intensive loadings is being developed. The purpose of the study consists in developing a family of mathematical models in the form of mechanical oscillatory systems, in which the elastic elements stiffness varying would allow forming a plurality of dynamic states. Mechanical oscillatory systems formed by solid bodies interacting with account for elastic linkages are applied as computational schemes for vibration interactions of the technical objects elements. The problem of mechanical oscillatory systems mathematical models developing, enabling transformations in the form of joints representing the passage to the limit to the infinity of the elastic elements stiffness values to determine optimal structural and dynamic specifics of the engineering objects is being posed. The authors employ methods of theoretical mechanics, differential equations, vibration theory, integral equations and structural mathematical modeling methodology, based on comparing oscillatory systems to the dynamically equivalent structural diagrams of the automatic control systems. An approach to accounting for sequential joints in relative translational and rotational motion forms was developed. A theorem on the joining result independence from the order of sequential application of partial joints in the forms of translational and rotational relative movements was proven. The article demonstrates that the joints being considered as a process of the rigidity increasing while the two solids interaction, are being manifested by the unrestricted growth of the natural frequencies and frequencies of oscillations dynamic damping of the corresponding coordinates of the system. The methodology being developed for mathematical models constructing, is focused, in particular, on the design-and-technical solutions in the field of vibration testing equipment for the helicopter blade spars dynamic states assessing and forming.

Keywords:

structural mathematical modeling, mechanical oscillatory systems, transfer functions, natural frequencies, frequencies of dynamic vibration damping, stiffness coefficients, articulation of solids

References

  1. Makhutov N.A. Bezopasnost' Rossii. Pravovye, sotsial'no-ekonomicheskie i nauchno-tekhnicheskie aspekty (Security of Russia. Legal, socio-economic, scientific and technical aspects. Thematic block "Safety of railway transport"), Moscow, 2021. Volume Section II, Tekhnogennaya bezopasnost' podvizhnogo sostava zheleznodorozhnogo transporta (Technogenic safety of railway rolling stock), Moscow, Moscow State Educational Institution Znanie, 2021, 740 p.
  2. Ganiev R.F. Nelineinye rezonansy i katastrofy. Nadezhnost', bezopasnost' i besshumnost' (Nonlinear resonances and catastrophes. Reliability, safety and quietness), Moscow, R&C Dynamics, 2013, 591 p.
  3. Chelomei V.N. Vibratsii v tekhnike: spravochnik (Protection from vibrations and shocks), Moscow, Mashinostroenie, 1981, 456 p.
  4. Clarence W. de Silva. Vibration. Fundamentals and Practice, Boca Raton, London, New York, Washington, D.C., CRC Press, 2000. 957 p.
  5. Harris, S.M., Srede C.E. Shock and Vibration Handbook, New York, McGraw - Hill Book So, 2002, 1457 p.
  6. Panovko G.Ya. Dinamika vibratsionnykh tekhnologicheskikh protsessov (Dynamics of vibrational technological processes), Moscow-Izhevsk, NITs «Regularnaya i khaoticheskaya dinamika», Institut komp'yuternykh tekhnologii, 2006, 176 p.
  7. Kopylov Yu.R. Dinamika protsessov vibroudarnogo uprochneniya (Dynamics of vibration shock hardening processes), Voronezh, IPTs «Nauchnaya kniga», 2011, 568 p.
  8. Blekhman I.I. Teoriya vibratsionnykh protsessov i ustroistv. Vibratsionnaya mekhanika i vibratsionnaya tekhnika (Theory of vibration processes and devices. Vibration mechanics and vibration technology, Saint Petersburg, ID «Ruda i Metally», 2013, 640 p.
  9. Glazunov V.A. XVI Vserossiiskaya mul'tikonferentsiya po problemam upravleniya (MKPU-2023): sbornik trudov. Volgograd, Volgogradskii gosudarstvennyi tekhnicheskii universitet, 2023, vol. 1, pp. 16-19.
  10. Ganiev R.F. Problemy mashinostroeniya i nadezhnosti mashin, 2019, no. 6, pp. 3-33. DOI: 10.1134/S0235711919060051
  11. Glazunov V.A. Filippov G.S., Ganiev R.F Problemy mashinostroeniya i nadezhnosti mashin, 2018, no. 5, pp. 16-25. DOI: 10.31857/S023571190001553-9
  12. Zadpoor A.A. Mechanical meta-materials, Materials Horizons, 2016, vol. 3 (5), pp. 371–381. DOI: 10.1039/C6MH00065G
  13. Adzhibekov A.A., Zhukov A.A., Alekseev O.A. Trudy MAI, 2016, no. 87. URL: https://trudymai.ru/eng/published.php?ID=69728
  14. Bobrovnitskii Yu.I. Tomilina T.M. Akusticheskii zhurnal, 2018, vol. 64, no. 5, pp. 517-525. DOI: 10.1134/S0320791918040020
  15. Yang T., Jiang X., Huang Y., Tian Q., Zhang L., Dai Z., Zhu H. Mechanical sensors based on two-dimensional materials: Sensing mechanisms, structural designs and wearable applications, iScience, 2022, vol. 25 (1), pp. 103728. DOI: 10.1016/j.isci.2021.103728
  16. Schurger B., Frankovsky P., Janigova S., Bocko J., Kolodziej A. Mechanical metamaterials: Properties and classification, Acta Mechatronica, 2023, vol. 8 (3), pp. 29–35. DOI: 10.22306/am.v8i3.98
  17. Liu Chenyang, Xi Zhang, Jiahui Chang, You Lyu, Jianan Zhao, Song Qiu. Programmable mechanical metamaterials: basic concepts, types, construction strategies—a review, Frontiers in Materials, 2024, vol. 11. URL: https://doi.org/10.3389/fmats.2024.1361408
  18. Nicolás Contreras, Xihong Zhang, Hong Hao, Francisco Hernández. Application of elastic metamaterials/meta-structures in civil engineering: A review, Composite Structures, 2024, vol. 327, pp. 117663. DOI: 10.1016/j.compstruct.2023.117663
  19. Banakh L.Ya., Pavlov I.S. Problemy mashinostroeniya i nadezhnosti mashin, 2023, no. (4) 3, pp. 11. DOI: 10.31857/S0235711923040053
  20. Erofeev V.I., Pavlov I.S. Problemy prochnosti i plastichnosti, 2021, vol. 83, no. 4, pp. 391-414. DOI: 10.32326/1814-9146-2021-83-4-391-414
  21. Erofeev V.I., Pavlov I.S.Structural Modeling Of Metamaterials // Advanced Structured Materials, 2021, vol. 144, pp. 1-20.
  22. 22. Erofeev V.I., Kolesov D.A., Leont'eva A.V. Problemy prochnosti i plastichnosti, 2022, vol. 84, no. 2, pp. 157-167.
  23. Erofeev V.I., Korsakov M.I. XXXV sessiya Rossiiskogo akusticheskogo obshchestva: sbornik trudov, Moscow, Izd-vo GEOS, 2023, pp. 991-995.
  24. Eliseev S.V., Reznik Yu.N., Khomenko A.P., Zasyadko A.A. Dinamicheskii sintez v obobshchennykh zadachakh vibrozashchity i vibroizolyatsii tekhnicheskikh ob"ektov (Dynamic synthesis in generalized problems of vibration protection and vibration isolation of technical objects), Irkutsk, IGU, 2008, 523 p.
  25. Kuznetsov N.K. Dinamika upravlyaemykh mashin s dopolnitel'nymi svyazyami (Dynamics of controlled machines with additional connections), Irkutsk, Izd-vo Irkutskogo gosudarstvennogo. tekhnicheskogo universiteta, 2009, 288 p.
  26. Eliseev S.V., Reznik Yu.N., Khomenko A.P. Mekhatronnye podkhody v dinamike mekhanicheskikh kolebatel'nykh sistem (Mechatronic approaches in the dynamics of mechanical oscillatory systems), Novosibirsk, Nauka, 2011, 384 p.
  27. Eliseev S.V., Ermoshenko Yu.V. Sochleneniya zven'ev v dinamike mekhanicheskikh kolebatel'nykh sistem: monografiya (Articulations of links in the dynamics of mechanical oscillatory systems), Irkutsk, IrGUPS, 2012, 156 p.
  28. Eliseev S.V., Eliseev A.V., Bol'shakov R.S., Khomenko A.P. Metodologiya sistemnogo analiza v zadachakh otsenki, formirovaniya i upravleniya dinamicheskim sostoyaniem tekhnologicheskikh i transportnykh mashin (Methodology of system analysis in the tasks of assessment, formation and management of the dynamic state of technological and transport machines), Novosibirsk, 2021, 679 p.
  29. KrotP., Shiri H., Dabek P., Zimroz R. Diagnostic s of Bolted Joints in Vibrating Screens Based on a Multi-Body Dynamical Model, Materials, 2023, vol. 16 (17), pp. 5794. DOI: 10.2139/ssrn.4431443
  30. Zotov A.N., Tokarev A.P. Problemy mashinostroeniya i nadezhnosti mashin, 2023, no. 6, pp. 3-10. DOI: 10.31857/S0235711923050176
  31. Zotov A.A., Nagornov A.Yu., Volkov A.N., Popov V.O. Trudy MAI, 2021, no. 121. URL: https://trudymai.ru/eng/published.php?ID=162654. DOI: 10.34759/trd-2021-121-07
  32. Eliseev C.B., Gordeeva A.A., Fomina I.V. Vestnik Vostochno-Sibirskogo gosudarstvennogo universiteta tekhnologii i upravleniya, 2011, no. 4 (35), pp. 12.
  33. Eliseev S.V., Ermoshenko Yu.V., Sitov I.S. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana, 2012, no. 12, pp. 35.
  34. Eliseev S.V., Belokobyl'skii S.V., Lontsikh P.A. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana, 2012, no. 4, pp. 40.
  35. Eliseev S.V., Piskunova V.A., Savchenko A.A. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana, 2013, no. 1. S. 245-262.
  36. 36. Sorokin D.V., Babkina L.A., Brazgovka O.V. Proektirovanie uzlov razlichnogo naznacheniya na osnove topologicheskoi optimizatsii // Kosmicheskie apparaty i tekhnologii. 2022. T. 6. № 2. C. 61-82. DOI: 10.26732/j.st.2022.2.01


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход