Intra-ballistic and gas-dynamic non-stationary processes modeling in a two-channel solid rocket motor


Аuthors

Savin E. I.*, Minkov L. L.**

Tomsk State University, 36 Lenin Ave., Tomsk, Tomsk region, 634050, Russia

*e-mail: egorgg0@gmail.com
**e-mail: lminkov@ftf.tsu.ru

Abstract

The article considers the problem of gas flow modeling while igniting and operation mode reaching of a two-channel solid rocket engine equipped with a set-in solid fuel propellant charge of the all-ways combustion, with the igniter set in the front volume of the combustion chamber. Parameters in the charge channels are being described by the gas-dynamic one-dimensional non-stationary equations. The nozzle space (confusor) is being computed in “quazi-one-dimensional” setting with flow parameters averaging in the cross-sections. The gas flows movement is under way through the two channels, namely the central channel of charge and peripheral channel (the gap between the combustion chamber shell and the charge). Computation starts at the instant of the igniting composition compustion commence. The igniter delay is not accounted for. Gas in the combustion chamber is assumed to be quiescent. The propellant charge element ignition is in progress instantly at the surface reaching the ignition temperature. The combustion products mixture is being assumed as a multicomponent single-phase perfect gas. There is a plug (diaphragm) in the critical throat section that instantly collapses when a certain pressure is reached on it. Computation of non-stationary one-dimensional equations describing parameters and flows movement in the combustion chamber was performed in MATLAB. Computational areas limited by the charge and the beginning of the confuser, as well as the critical throat section, are being divided into N + 1 cells, which edges are numbered from 2 to N + 1. A difference scheme of the first order of accuracy was used when solving the equations. Parameters were computed at the centers of cells by the computed fluxes on the cell faces (the Van Leer method was used). Parameters distribution along the length of the charge channels at different moments of ignition is demonstrated. The results were being verified with the results of computations in a two-dimensional Ansys fluent setting to evaluate the calculations in a one-dimensional setting.

Keywords:

ignition, propellant charge, solid rocket motor, gas dynamics, non-stationarity

References

  1. Pyatunin K.R., Luginina N.S., Didenko R.A. Trudy MAI, 2013, no. 65. URL: https://trudymai.ru/eng/published.php?ID=35942
  2. Erokhin B.T., Lipanov A.M. Nestatsionarnye i kvazistatsionarnye rezhimy raboty RDTT (Non-stationary and quasi-stationary operating modes of solid rocket motors), Moscow, Mashinostroenie, 1977, 200 p.
  3. Amarantov G.N., Egorov M.Yu., Egorov S.M., Egorov D.M., Nekrasov V.I. Vychislitel'naya mekhanika sploshnykh sred, 2010, vol. 3, no. 3, pp. 5-17.
  4. Egorov M.Yu., Egorov S.M., Egorov D.M. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2010, no. 3, pp. 41-45.
  5. Kraev V.M., Yanyshev D.S. Trudy MAI, 2010, no. 37. URL: https://trudymai.ru/eng/published.php?ID=13415
  6. Bondarchuk S.S., Borisov B.V., Zhukov A.S. Izvestiya vysshikh uchebnykh zavedenii. Fizika, 2012, vol. 55, no. 9/3, pp. 24-26.
  7. Belyakov A.Yu. Trudy MAI, 2020, no. 110. URL: https://trudymai.ru/eng/published.php?ID=112931. DOI: 10.34759/trd-2020-110-19
  8. Raizberg B.A., Erokhin B.T., Samsonov K.P. Osnovy teorii rabochikh protsessov v raketnykh sistemakh na tverdom toplive (Fundamentals of the theory of work processes in solid fuel rocket systems), Moscow, Mashinostroenie, 1972, 383 p.
  9. Bondarchuk S.S., Borisov B.V., Sabyrbaev A.D. Fundamental'nye i prikladnye problemy sovremennoi mekhaniki: doklady konferentsii, Tomsk, Izd-vo Tomskogo universiteta, 2000, pp. 31-32.
  10. Aliev A.V. Vnutrennyaya ballistika RDTT (Internal ballistics of solid rocket motors), Moscow, Mashinostroenie, 2007, 504 p.
  11. Zhukov A.S., Borisov B.V., Bondarchuk S.S. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2011, no. 3 (15), pp. 83-86.
  12. Borisov B.V., Bondarchuk A.S., Zhukov S.S., Kurilenko N.I., Mamontov G.Ya. XXIII seminar po struinym, otryvnym i nestatsionarnym techeniyam (s mezhdunarodnym uchastiem): sbornik trudov. Tomsk, Natsional'nyi issledovatel'skii Tomskii politekhnicheskii universitet, 2012, pp. 41-46.
  13. Borisov B.V. Vserossiiskaya nauchno-prakticheskaya konferentsiya s mezhdunarodnym uchastiem «Teplofizicheskie osnovy energeticheskikh tekhnologii»: sbornik trudov. Tomsk, Natsional'nyi issledovatel'skii Tomskii politekhnicheskii universitet, 2010, pp. 90-94.
  14. Lipanov A.M., Aliev A.V. Proektirovanie raketnykh dvigatelei tverdogo topliva (Design of solid rocket motors), Moscow, Mashinostroenie, 1995, 400 p.
  15. Godunov S.K., Zabrodin A.V., Ivanov M.Ya., Kraiko G.P., Prokopov G.P. Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki (Numerical solution of multidimensional problems of gas dynamics), Moscow, Nauka, 1976, 400 p.
  16. Arkhipov V.A., Bondarchuk S.S., Bondarchuk I.S., Zolotorev N.N., Kozlov E.A., Orlova M.P. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2023, no. 84, pp. 52-67. DOI: 10.17223/19988621/84/5
  17. Belyaev N.M., Ryadno A.A. Metody nestatsionarnoi teploprovodnosti: uchebnoe posobie dlya vuzov (Methods of non-stationary thermal conductivity), Moscow, Vysshaya shkola, 1978, 328 p.
  18. Goodman T.R. Irvine T., Hartnett J. Integral Methods for nonlinear heat transfer. Advances in Heat Transfer. New-York: Academic Press, 1964, vol. 1, pp. 51-122.
  19. Van Leer B. Flux-Vector Splitting for the Euler Equation, Proceedings of the ICNMFD Conference, Lecture Notes in Physics, 1982, vol. 170, pp. 507-512.
  20. Shishkov A.A., Panin S.D., Rumyantsev B.V. Rabochie protsessy v raketnykh dvigatelyakh tverdogo topliva (Working processes in solid rocket motors), Moscow, Mashinostroenie, 1988, 240 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход