Increasing the accuracy of printed products on a photopolymer printer due to transformation of the position in the printing area.


Аuthors

Vekhteva N. A.*, Litovka Y. V.**, Obukhov A. D.***

Tambov State Technical University, 106, Sovetskaya, Tambov, 392000, Russia

*e-mail: 1magicanloner@gmail.com
**e-mail: polychem@list.ru
***e-mail: Obuhov.art@gmail.com

Abstract

The presented article regards an approach to analysis of a product 3D digital model, printing accuracy assessing of its elements, the speed of the printing process, and describes the main types of defects that occur during three-dimensional printing and their dependence on the placement of elements in the printing space.
The central issue of the research is the DLP photopolymerization technology and the resulting defects in the finished product. The article describes the most common types of defects, and considers the impact of the elements arrangement in the print space.
Various methods, detecting and describing defects, such as jog formation, size drift and shape deviations, are employed for the printing analysis and accuracy assessment. The 3D drawing elements classification, in which the above said defects may occur, is presented as well.
The article addresses also the problem of accuracy degradation and increased number of defects due to the printing speed increasing. The main task of the described approach consists in finding the optimal balance between the speed and accuracy. The authors propose an approach to optimal balance achieving by changing the model angle of rotation prior to installing supports and slicing it into layers for printing. The described approach includes setting weighting coefficients of importance of the  selected classes of defects  and searching for deformable elements of a 3D drawing, determining their characteristics and computing deviations. The multi-criteria problem solution is being performed by the Pareto efficiency method, which finds optimal solutions between product compliance with the drawing and printing time.
To quantify the finished product conformity to the drawing, a method using the utility function, was proposed and considered. In this method, classes of the drawing elements defects are being selected as criteria, and weighting coefficients represent the significance of the selected defect absence on the finished product.

Keywords:

accuracy assessment, printing, three-dimensional photopolymer printing, utility function

References

1. Pizhenkov E.N., Podgorbunskikh V.M., Roshchin V.A. Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Sovremennye usloviya vzaimodeistviya nauki i tekhniki»: sbornik statei. Ufa, Omega Sains, 2018, pp. 91–96.
2. Molotkov A.A., Tret'yakova O.N. Trudy MAI, 2022, no. 127. URL: https://trudymai.ru/eng/published.php?ID=170306. DOI: 10.34759/trd-2022-127-25
3. Wang Y.C., Chen T., Yeh Y.L. Advanced 3D printing technologies for the aircraft industry: a fuzzy systematic approach for assessing the critical factors, The International Journal of Advanced Manufacturing Technology, 2019, vol. 105, pp. 4059-4069. DOI: 10.1007/s00170-018-1927-8
4. Karakurt I., Lin L. 3D printing technologies: techniques, materials, and post-processing, Current Opinion in Chemical Engineering, 2020, vol. 28, pp. 134-143. DOI: 10.1016/j.coche.2020.04.001
5. Shahrubudin N., Lee T.C., Ramlan R. An overview on 3D printing technology: Technological, materials, and applications, Procedia Manufacturing, 2019, vol. 35, pp. 1286-1296. DOI: 10.1016/j.promfg.2019.06.089
6. Kazakov V.S. Nauchnye vesti, 2020, no. 6 (23), pp. 176-179.
7. Goryachkin B.S., Chernata N.S. Obzor vozmozhnykh variantov ispol'zovaniya tekhnologii i materialov 3d pechati v aviatsionnoi promyshlennosti, E-Scio, 2021, no. 5 (56), pp. 657-682.
8. Masiuchok O. et al. Comparative analysis of the quality of plastic products formed by DLP and FDM 3D printing technologies, Vіsnik Ternopіl's'kogo natsіonal'nogo tekhnіchnogo unіversitetu, 2020, vol. 98, no. 2, pp. 40-48.
9. Muravskii A.A., Alikin M.B. et al. Izvestiya SPbGTI (TU), 2023, no. 64 (90), pp. 58-66.
10. Mitin V.Yu. Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika. 2018, no. 2 (41), pp. 67-74.
11. Piedra-Cascón W. et al. 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review, Journal of Dentistry, 2021, vol. 109, pp. 103630. DOI: 10.1016/j.jdent.2021.103630
12. de Castro E. F. et al. Effect of build orientation in accuracy, flexural modulus, flexural strength, and microhardness of 3D-Printed resins for provisional restorations, Journal of the Mechanical Behavior of Biomedical Materials, 2022, vol. 136, pp. 105479. DOI: 10.1016/j.jmbbm.2022.105479
13. Kowsari K. et al. Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing, Additive Manufacturing, 2018, vol. 24, pp. 627-638. DOI: 10.1016/j.addma.2018.10.037
14. Shan Y. et al. Reducing lateral stair-stepping defects in liquid crystal display-based vat photopolymerization by defocusing the image pattern, Additive Manufacturing, 2022, vol. 52, pp. 102653. DOI: 10.1016/j.addma.2022.102653
15. Paral S. K. et al. A Review of Critical Issues in High-Speed Vat Photopolymerization, Polymers, 2023, vol. 15, no. 12, pp. 2716. DOI: 10.3390/polym15122716
16. Liu P. et al. Visualization of full-field stress evolution during 3D penetrated crack propagation through 3D printing and frozen stress techniques, Engineering Fracture Mechanics, 2020, vol. 236, pp. 107222. DOI: 10.1016/j.engfracmech.2020.107222
17. Msallem B. et al. Evaluation of the dimensional accuracy of 3D-printed anatomical mandibular models using FFF, SLA, SLS, MJ, and BJ printing technology, Journal of clinical medicine, 2020, vol. 9, no. 3, pp. 817. DOI: 10.3390/jcm9030817
18. Shtoier R. Mnogokriterial'naya optimizatsiya. Teoriya, vychisleniya i prilozheniya (Multicriteria optimization. Theory, calculations and applications) Moscow, Radio i svyaz', 1992, 504 p.
19. Bogdanova P.A., Sakharov D.M., Vasil'eva T.V. Innovatsionnye aspekty razvitiya nauki i tekhniki, 2021, no. 6, pp. 153-157.
20. Razumov D.F. Razrabotka metodiki mnogokriterial'noi otsenki proektov kosmicheskikh sredstv i sistem (Development of a methodology for multi-criteria evaluation of spacecraft and systems projects). Doctor's thesis, Moscow, MAI, 2021, 128 p.
21. Germeier Yu.B. Vvedenie v teoriyu issledovaniya operatsii (Introduction to Operations Research Theory), Moscow, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1971, 384 p.
22. Litovka Yu.V. Poluchenie optimal'nykh proektnykh reshenii i ikh analiz s ispol'zovaniem matematicheskikh modelei (Obtaining optimal design solutions and their analysis using mathematical models), Tambov, Izd-vo Tambovskogo gosudarstvennogo tekhnicheskogo universiteta, 2006, 160 p.
23. Piyavskii B.S., Abdykerov S.E. Trudy MAI, 2010, no. 37. URL: https://trudymai.ru/eng/published.php?ID=13446
24. Krivoruchenko S.A., Pogosyan A.M., Ryabyshkin A.Yu. Mir standartov, 2009, no. 4, pp. 35-41.
25. Vasil'kov Yu.V., Timoshenko A.V., Sovetov V.A., Kirmel' A.S. Trudy MAI, 2019, no. 108. URL: https://trudymai.ru/eng/published.php?ID=109557. DOI 10.34759/trd-2019-108-16 
26. Kalinin S.Yu., Rozhdestvenskii S.Yu., Shlenov Yu.V Trudy MAI, 2012, no. 56. URL: https://trudymai.ru/eng/published.php?ID=30147
27. Vekhteva N.A., Volkov A.A., Sveshnikov A.Yu. Virtual'noe modelirovanie, prototipirovanie i promyshlennyi dizain, 2022, no. 8, pp. 134-138.
28. Tu Dzh., Gonsales R. Printsipy raspoznavaniya obrazov (Principles of pattern recognition), Moscow, Mir, 1978, 28.
29. Romanova I.K. Mashinostroenie i komp'yuternye tekhnologii, 2014, no. 4, pp. 238-266.
30. Litovka Yu.V., Solov'ev D.S. Sistemy podderzhki prinyatiya reshenii (Decision support systems), Tambov, Izd-vo TGTU, 2022, 80 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход