Improving the Aerodynamics of the Straight Wing with Slanted Tips and Floats by Adding a Triangular Protrusion

Aviation technics and technology


Sakornsin R. *, Popov S. A.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia



The paper aims at conducting numerical studies of the effect of triangular protrusion on the aerodynamic characteristics of seaplane wing.
The research was carried out with the help of a numerical flow calculation method by using ANSYS Fluent 14.5 software package (license number 670351).
Observations of the typical planform of the birds’ wings and analysis of the possible positive influence of the vortices on the wing aerodynamics have inspired the usage of a triangular protrusion for the wings of modern seaplanes.
A series of numerical calculations has been carried out with the help of the ANSYS Fluent computational fluid dynamics software system to determine the total aerodynamic coefficients and model the flow pattern in the vicinity of the wing. Calculations confirmed the positive effect of the triangular protrusions on the aerodynamics of a seaplane wing. The wing drag was reduced significantly. The value of aerodynamic efficiency was increased by more than seven units.
The results of the research can be used in seaplane aerodynamics.
The paper proposes a new wing planform shape. In the proposed shape the triangular protrusion plays the role of a vortex generating element, the use of which allows improving the aerodynamic characteristics of the seaplane wing significantly.


amphibious aircraft, bird wing, wing with triangular protrusion, the Reynolds-averaged Navier-Stokes equations, turbulence models, aerodynamic coefficients


  1. Badjagin A.A., Muhamedov F.A. Proektirovanie legkih samoljotov (Design of Light Aircraft), Moscow, Mashinostroenie, 1978, 208 p.
  2. Anderson J.D. Introduction to Flight , McGraw-Hill Higher Education; 2000, 784 p.
  3. Anderson J.,D., Fundamentals of Aerodynamics , McGraw–Hill Science, Engineering, 2001, 892 p.
  4. Arep'ev A.N. Proektirovanie legkih passazhirskih samoljotov (Designing Lighter Aircraft), Moscow, MAI, 2006, 640 p.
  5. Bondarev E.N., Dubasov V.T., Ryzhov Ju.A. Ajerogidromehanika (Aerohydromechanics), Moscow, Mashinostroenie, 1993, 608 p.
  6. Maskalik A.I., Nagapetjan R.A., Ivanenko V.V., Butlickij R.A., Tomilin V.V., Luk'janov A.I. Jekranoplany — transportnye suda XXI veka (Ekranoplans — Transport Ships XXI Century), St. Petersburg, Sudostroenie, 2005, 547 p.
  7. Rozhdestvensky K.V. Aerodynamics of a lifting system in extreme ground effect, Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 2000, 362 p.
  8. Volkov G. Osnovy gidroaviacii (Fundamentals of hydro aviation), Moscow, Voenizdat, 1940, 248 p.
  9. Munro V. Proektirovanij i raschet gidrosamoletov (Engineering and Design of Seaplanes), Moscow, Glavnaja redakcija aviacionnoj literatury, 1935, 147 p.
  10. Neal L., Neal H., Mujezinovic D. Wingtip Devices, Virginia Polytechnic Institute and State University, 2004, 26 p.
  11. Samsonov P.D. Proektirovanie i konstrukcii gidrosamoljotov (Design and Construction of Seaplanes), Moscow, Glavnaja redakcija aviacionnoj literatury, 1936, 372 p.
  12. Arzhanikov N.S., Sadekova G.S. Ajerodinamika letatel'nyh apparatov (Aerodynamics of Aircraft), Moscow, Vysshaja shkola, 1983, 359 p.
  13. Streit Th., Ronzheimer A., BüScher A. Numerical analysis of transport aircraft using different wing tip devices. New Results in Numerical and Experimental Fluid Mechanics V. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2006, Volume 92/2006, pp. 59-68.
  14. Frank T. Zurheide, Matthias Meinke and Wolfgang Schröder. Meandering of Wing-Tip Vortices Interacting with a Cold Jet in the Extended Wake. – High Performance Computing on Vector Systems 2008, 2009, pp. 223-242.
  15. Liang Yun, Alan Bliault, Johnny Doo. WIG Craft and Ekranoplan: Ground Effect Craft Technology [Hardcover]. – Springer; 1 edition, December 16, 2009, 458 p.
  16. Brjedshou P. Vvedenie v turbulentnost' i ee izmerenie (Introduction to turbulence and its measurement), Moscow, Mir, 1974, 279 p.
  17. Shlihting G. Teorija pogranichnogo sloja (Boundary-layer theory), Moscow, Nauka, 1974, 712 p.
  18. Wilcox D.C. Turbulence modeling for CFD, DCW Industries Inc., 1998, 537 p.
  19. Belov I.A., Isaev S.A. Modelirovanie turbulentnyh techenij (Simulation of turbulent flow), St. Petersburg, Balt University, 2001, 109 p.
  20. Chklovski T. Pointed-Tip Wings at Low Reynolds Numbers. – The University of Southern California, USA, January 2012.
  21. Guerrero M., Clark D. Yak 52 Wingtip Design. – San Jose State University, Mechanical Engineering Department / ME195B Senior Design Project Spring 2010, Senior Design Report, 93 p.
  22. Ruppell G. Bird Flight. — Van Nostrand Reinhold Co., New York, 1977, 191 p.
  23. Kolesnikov G.A., Markov V.K., Mihajljuk A.A. Ajerodinamika letatel'nyh apparatov (Aerodynamics of Aircraft), Moscow, Mashinostroenie, 1993, 544 p.
  24. Sakornsin R., Popov S.A. Optimizacija ajerodinamicheskogo oblika kryla gidrosamoleta s poplavkom na konce (Optimization of the Aerodynamics for the Wing Seaplane With Floats on the End), Moscow, Elektronnyj zhurnal «Trudy MAI» 2012, no, 57, available at: (accessed 30.07.2012)

Download — informational site MAI

Copyright © 2000-2021 by MAI