The influence of admixture of organic aluminium alkali corrosion inhibitors on the air aluminium electrochemical generator characteristics

Electrotechnology. Electromechanics


Zhuk A. Z.1*, Ilyukhina A. V.1**, Pushkin K. V.2***, Sevruk S. D.2****, Farmakovskaya A. A.2*****

1. Joint Institute for High Temperatures RAS, 13, Izhorskaya str., Moscow, 125412, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia



The specific energy characteristics of air-aluminium (AA) electrochemical generator (ECG) with alkali electrolyte are higer than for nickel-cadmium and nickel-hydride batteries, which are traditionally used in aerospace techniques.
To provide the high efficiency index of aluminium as anode material in ECG it is necessary to decrease its corrosion rate in alkali electrolyte to the utmost without degradation or with certain increase of its activity in current-producing process.
On the basis of the research performed earlier it was discovered that the composition of anode (aluminium-indium alloy А995 + 0,6 масс.% In) and electrolyte (4М NaOH + 0,06M Na2SnO3⋅3H2O) have meet all the requirements. Indium in the anode alloy fulfils a function of depassivating agent and ion stannates in alkali electrolyte inhibit its corrosion.
However in the ECG working process the tin from electrolyte deposits in the metal form on aluminium surface. In the anode corrosion process it precipitates onto the interelectrode gap in the form of a sludge that can result in interelectrode short circuit. Therefore, the critical task is to search the alkali corrosion inhibitors for aluminium anodes alternative to stannates and to examine their influence on the electric, energy and operational characteristics of AA ECG.
The paper contains the results of the experimental research of the influence of the admixtures of a number of organic aluminium corrosion inhibitors to AA ECG alkali electrolyte on these characteristics. The research was performed at the temperature of 333К. It were obtained polarization and corrosion characteristics for the following combination: A995 aluminium and Al-In anode alloy in 4M clear solution of NaOH with the addition of 0,052М potassium citrate; for the same alloy and for АП4Н protect alloy in 8M clear solution of NaOH; in the same solution with the admixtures of 0,06M Na stannate (for reference), 0,01M citrate and 0.01M sodium benzoate.
The research has shown that above mentioned admixtures decrease polarization characteristics of aluminium indium anodes reducing their corrosion rate. Besides, their usage leads to the negative difference effect as opposed to alkali stannate electrolytes that demonstrate the positive difference effect. Therefore, the organic inhibitors that have been examined could find limited application in AA ECG.


aluminium, anode, air, corrosion, organic inhibitor, polarization, characteristic, electrochemical cell, alkali, electrolyte, electric power plant


  1. Tomashev N.D., Modestova V.N. Trudy IFH AN USSR, 1995, vol.4, pp.113-152.
  2. Nazarenko V.V., Fateev Yu.F., Antropov L.I. Ukrainskiy khimicheskiy jurnal, 1982, vol.48, no.9, pp. 953-956.
  3. Despic A.R., Drazic D.M., Purenovic M.M., Cikovic N. Appl. Electrochem. 1976, vol.6, p. 527.
  4. Macdonald D.D., English С. J. Appl. Electrochemistry, 1990. V.20. pp.405-417.
  5. Skundin A.M. Zashchita metallov, 1993, vol.29, pp. 791-793.
  6. Chu D., Savinell R.F. Electrochim. Acta, 1991, vol.36, p. 1631.
  7. Fedot’ev N.P., Bibikov I.N., Vyacheslavov P.M., Grilikh E. Elektroliticheskie splavy, (Electrochemical alloys), Moscow. Mashgiz, 1962, 312 p.
  8. Il’in V.A. Luzhenie I svintsevanie (Tinning and leading), Moscow, Mashinostroenie, 1961, 33 p.
  9. Morachevskiy A.G., Sladkov I.B. Termodinamicheskie raschyoty v metallurgii (Thermodynamic calculations in the metallurgy), Moscow, Metallurgiya, 1985, 136 p.
  10. Müller S., Holzer F., Desilvestro J., Haas О. Appl. Electrochem, 1996, vol. 26, p. 1217.
  11. Tukey Dzh. Analiz rezultatov nablyudenii (Analysis of observation results), Mir, Moscow, 1981, pp. 696.
  12. Antropov L.I., Makushka E.M., Panasenko V.F. Ingibitory korrozii metallov (Metal corrosion inhibitors), Kiev, Tekhnika, 1981, 181 p.
  13. Balezin S.A., Klimov I.N. Izv. VUZov SSSR, 1962, V. 5, no.1, p. 13-17.
  14. Vernik S., Pinner P. Khimicheskaya i elektrokhimicheskaya obrabotka alyuminiya i ego splavov (Chemical and electrochemical treatment of aluminum and its alloys), Saint-Petersburg, Sudpromgiz, 1960, 387 р.
  15. Karonik V.V., Klochkova L.L., Kulakov E.B., Sevruk S.D., Farmakovskaya A.A. Elektrodnye protsessy v novykh istochnikakh toka, Sbornik statei, Moscow, 1988, pp. 28-33.
  16. Vishomirskis R.N. Kinetika elektroosajdeniya metallov iz kompleksnikh elektrolitov (Kinetics of the electrodeposition of metals from complex electrolytes), Moscow. Nauka, 1969, 244 p.
  17. Layner V.I. Sovremennaya gal’vanotekhnika (Modern electroplating), Moscow, Metallurgiya, 1967, 382 p.
  18. Khansen M., Anderko K. Struktury dvoynih splavov, (Constitution of binary alloys), Moscow, Metallurgizdat, 1962, 875 p.
  19. Klochkova L.L., Kulakov E.B., Sevruk S.D., Farmakovskaya A.A. Materialy II Vsesoyuznoy konferencii “Elektrohimicheskaya energetika”, Moscow, 1984, pp. 122-123.
  20. Nazarenko V.V., Fateev Yu.F., Antropov L.I. Vliyanie neorganicheskikh soedinenii na ingibiruyushchee deistvie sorbata pri shchelochnoi korrozii alyuminiya , Sbornik statei, Izhevsk, 1960, vol. 2, pp. 26-28.
  21. Nazarenko V.V., Fateev Yu.F., Antropov L.I. Ukr. khim. zhurnal. 1982, vol. 48, no. 4, pp. 333-385.
  22. Or A., Fantev R., Nazarenko V.V., Klayn E. Materialy III natsional’noy konferentsii “Korroziya i zashchita ot korrozii. Sofia, 1983, pp.9.

Download — informational site MAI

Copyright © 2000-2022 by MAI