Study on thermal shields characteristics of aeroelastic braking devises of reentry vehicles descent into the planets atmosphere

Space technologies


Аuthors

Alifanov O. M.1*, Ivankov A. A.2**, Netelev A. V.***, Finchenko V. S.2

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: o.alifanov@yandex.ru
**e-mail: ival@laspace.ru
***e-mail: netelev@mai.ru

Abstract

Aerothermodynamics investigations of perspective atmosphere descent vehicles (DV) are the main point of interest of Russian and foreign scientists, who have deal with design of modern space technologies. In these descent vehicles the aerodynamic and thermal protective shields made to the shape of aeroelastic constructions in part or in whole, and in particular made to the shape of hermetic gas pressurized shells are used for effectiveness deceleration.
The one from the main projects realizations problems of such DV with ballute is creation of thermal protective system for ballute shells forming frontal aerodynamic shield (FAS). In comparison with thermal shields of hard structure the peculiarity and main advantages of FAS are the possibility to pack ballute in well-knit capacity size during the transportation of DV with ballute under the launch vehicle fairing and on the board of spacecraft.
It is reasonable to use complex mathematical description of all processes going with vehicle atmospherically movement at all regimes of gas flow for operating aerothermodynamics calculation of DV with ballute during the reentry and for solution to main target — determination of structural characteristics of flexible thermal protective cover of frontal area.
This paper presents the short description of such complex mathematical model, directions to applied numerical methods of solution to model integrated parts, and some results of parametrical calculations of reentry main aerothermodynamical characteristics of chosen DV with ballute design having different ballistic parameters of atmospheric entry — vehicle and angle.

Keywords:

lander, inflatable braking device, a thermal barrier coating, trajectory, ablative materials

References

  1. Zemlynskiy B.A., Ivankov A.A., Ustinov S.N., Finchenko V.S. Vestnik Rossiiskogo fonda fundamental’n’nykh issledovanii, 2008, no.1(57), pp. 37-63.
  2. Aleksashkin B.A., Pichkhadze K.M., Ustinov S.N., Finchenko V.S. Teplovie processi v tehnike, 2010, vol. 2, no. 1, pp. 230-240.
  3. Aleksashkin B.A., Pichkhadze K.M, Finchenko V.S. Vestnik Nauchno-proizvodstvennogo ob’dineniy after S.A. Lavochkin , 2012, no.2(13), pp. 4-1.
  4. Efanov V.V., Pichhadze K.M Proektirovanie avtomaticheskih kosmicheskih apparatov dlja fundamentalnyh nauchnyh issledovanij (Designing of automatic spacecraft for fundamental research), Moscow, Nauchno-proizvodstvennoe ob’dinenie after S.A. Lavochkin , 2012, pp. 466-527.
  5. Alifanov O.M., Outchvatov V.I., Pichkhadze K.M. Thermal protection of re-entry vehicles with the usage of inatable systems, Acta Astronautica, 2003, vol. 53, no.4-10, pp. 541-546.
  6. Alifanov O.M., Budnik S.A., Nenarokomov A.V., Netelev A.V. Teplovye processy v tehnike, 2011,vol. 3 no. 8, pp.338-348.
  7. Alifanov O.M., Budnik S.A., Michailov V.V., Nenarokomov A.V., Teplovye processy v tehnike, 2009,vol. 1, no. 2, pp. 49-60.
  8. Alifanov O.M., Budnik C.A., Mikhailov V.V., Nenarokomov A.B. An Experimental-Computational System for Materials Thermal Properties Determination and its Application for Spacecraft, Acta Astronautica, 2007, vol.61. pp. 341-351
  9. Stephen J. Hughes, Robert A. Dillman, Brett R. Starr, Ryan A. Stephan, Michael C. Lindell, Charles J. Player, Dr. F. McNeil Cheatwood, Proceedings of the 18th conference «Aerodynamic Decelerator Systems Technology», AIAA Paper 2005-1636, 2005.
  10. James N. Moss, Christopher E. Glass, Brian R. Hollis, Van Norman John W., Proceedings of 44th AIAA Aerospace Meeting and Exhibit, AIAA Paper 2006-1189, 2006.
  11. Aleksashkin B.A., Ivankov A.A., Finchenko Teplovye processy v tehnike, 2009, vol. 1, no. 6, pp. 253-258.
  12. Alifanov O.M., Budnik S.A., Netelev A.V. Patent RU 81162 U1, 15.10.2008
  13. Alifanov O.M., Budnik S.A., Netelev A.V. Patent RU 132423 U1, 18.04.2013
  14. Finchenko V.S., Pichhadze K.M, Ivankov A.A. Patent RU 82679 U1, 25.12.2008.
  15. Golomazov M.M., Ivankov A.A. Vestnik Nauchno-proizvodstvennogo ob’dineniy after S.A. Lavochkin , 2012, no. 1(12), pp. 38-45.
  16. Belocerkovskiy O.M. Obtekanie zatuplennyh tel sverhzvukovym potokom gaza (Flow around blunt bodies by supersonic gas stream), Moscow,1967, VC AN SSSR, 401 p.
  17. Telegin G.F., Tinykov G.P. Doklady AN SSSR, 1964, vol. 154, no. 5, pp. 1056-1058.
  18. Borisov V.M., Ivankov A.A. vychislitelnoj matematiki i matematicheskoj fiziki, 1992, vol. 32, no. 6, pp.952- 956
  19. Ivankov A.A. Zhurnal vychislitel’noj matematiki i matematicheskoj fiziki, 2005, vol. 45, no. 7, pp. 1279-1288.
  20. Narimanov G.S., Tihonravov M.K. Osnovy teorii poleta kosmicheskih apparatov (Fundamentals of spacecraft theory of flight), 1972, Moscow, Mashinostroenie, 608 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход