Method of probe diagnostics flows of dense plasma using a flat wall surface probe


Аuthors

Kotel'nikov V. A.*, Kotelnikov M. V.*

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: mvk_home@mail.ru

Abstract

Physical, mathematical and numerical models of the problem of a flat wall probe in the shape of oblong rectangular, engulfed by parallel to its surface flow of weakly ionized plasma were developed.

We carried out full-scale computational experiments resulting in obtaining theoretical values of current density versus probe typical size r0, its potential φ0, directional velocity of a dense weakly ionized plasma u0, ions and electrons temperatures ratio ε, parameter D0, that characterizes orifice gas molar mass.

Non-linear end and edge effects and their impact on probe current density were studied. The studies show that probe current density at reasonably large negative potentials (φ0 < —40) and probe typical sizes (r0 > 50) exceeds minimal limit value, practically irrespective of parameters of the problem.

Obtained ion saturation current limit value allows developing an original probe experiment methodology with its further processing. This methodology does not require availability of probe characteristics set, applicable for large probes of any geometric shape (disc, square, rectangle etc.), meant for application with streams of various molar masses. Probe experiment processing is simple and does not require complex computational algorithms application.

The suggested methodology may be useful for probe experiment results processing with GLA, as well as dense weakly ionized plasma jets, flowing out of different purpose plasma jets.

Keywords:

electric probe, probe experiment, flat wall surface probe, continuity equation, Poisson equation, finite effect, edge effect

References

  1. Chan P., Telbot L., Turyan K. Elektricheskie zondy v nepodvizhnoi i dvizhushcheisya plazme. Teoriya i primenenie (Electric probes in stationary and moving plasma. Theory and application), Moscow, Mir, 1978, 202 p.
  2. Kashevarov A.V. Elektricheskie zondy v medlenno dvizhushcheisya i pokoyashcheisya stolknovitel’noi plazme (Electric probes in slow-moving and stationary collisional plasma), Doctor’s thesis, TsAGI, 2005, 204 p.
  3. Benilov M.S., Kosov V.F., Rogov B.V., Sinel’shchikov V.D. Teplofizika vysokikh temperatur, 1987, vol. 25, no. 3, pp. 573-981.
  4. Benilov M.S. Teplofizika vysokikh temperatur, 1998, vol. 26, no. 5, pp. 140-141.
  5. Benilov M.S., Rogov B.V., Tirskii G.A. Teplofizika vysokikh temperatur, 1981, vol. 19, no. 5, pp. 1031-1039.
  6. Kashevarov A.V. Teplofizika vysokikh temperatur, 1992, vol. 30, no. 6, pp. 1220-1223.
  7. Ivanov Yu.A., Lebedev Yu.A., Polak L.S. Metody kontaktnoi diagnostiki v neravnovesnoi plazmokhimii (Methods contact diagnostics of non-equilibrium plasma chemistry), Moscow, Nauka, 1981, 276 p.
  8. Alekseev B.V., Kotel’nikov V.A. Zondovyi metod diagnostiki plazmy (Probe method of diagnostics of plasma), Moscow, Energoatomizdat, 1988, 239 p.
  9. Kotel’nikov V.A., Ul’danov S.V., Kotel’nikov M.V. Protsessy perenosa v pristenochnykh sloyakh plazmy (Transporttation processes in parietal layers of plasma), Moscow, Nauka, 2004, 422 p.
  10. Kotel’nikov V.A., Gidaspov V.Yu., Kotel’nikov M.V., Volkov V.A., Khokhlov A.V. Matematicheskoe modelirovanie obtekaniya tel slaboionizovannoi stolknovitel’noi plazmoi (Mathematical modeling of bodies engulfing by collisional weakly ionised plasma). Moscow, MAI, 2008, 121 p.
  11. Kotel’nikov M.V. Ploskii elektricheskii zond: teoriya i prilozheniya (Flat electric probe: theory and applications), Moscow, MAI, 2015, 212 p.
  12. Kotel’nikov M.V. Mekhanika i elektrodinamika pristenochnoi plazmy (Mechanics and electrodynamics of near-wall plasma), Doctor’s thesis, Moscow, MAI, 2008, 276 p.
  13. Samarskii A.A., Nikolaev E.S. Metody resheniya setochnykh uravnenii (Methods for solving grid equations), Moscow, Nauka, 1977, 210 p.
  14. Kalitkin N.N. Chislennye metody (Numerical methods), Moscow, Nauka, 1978, 324 p.
  15. Godunov S.K. Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki (Numerical solution of multidimensional problems of gas dynamics), Moscow, Nauka, 1976, 317 p.
  16. Belotserkovskii O.M., Davydov Yu.M. Metod krupnykh chastits v gazovoi dinamike. Vychislitel’nyi eksperiment (Method of large particles in gas dynamics. Computational experiment), Moscow, Nauka, 1982, 392 p.
  17. Loitsyanskii L.N. Mekhanika zhidkosti i gaza (Liquid and gas mechanics), Moscow, Nauka, 1987, 840 p.
  18. Savel’ev I.V. Kurs obshchei fiziki (Course of General physics), Moscow, Nauka, 1988, vol. 1, 319 p.
  19. Kotel’nikov М.V., Kotel’nikov V.А. Elektronnyi zhurnal «Trudy MAI», 2015, no.79, availableat: http://www.mai.ru/science/trudy/eng/published.php?ID=55757

Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход