Numerical-analytical method to calculate plate response and durability under broadband acoustic loads and its verification

Deformable body mechanics


Denisov S. L.1*, Medvedskiy A. L.2**

1. Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia
2. Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), Zhukovsky, Moscow region, Russia



New ICAO requirements for external aviation noise reduction draw increasing attention to the new types of airframe design/layout to use airframe as shield from engine noise. While targeting external noise reduction, the wingbody layout looks like the most promising. This layout places engines over the airframe. It is necessary to note that this layout leads to increase of the airframe area which suffers from acoustic loads. In turn, these loads produce the stresses which can lead to fatigue airframe failure. So despite of significant progress in aviation engine noise reduction, the discussions about acoustic fatigue and durability of aircraft structures (for example, plates and shells) gain back their popularity.

In this paper we proposed the hybrid numerical-analytical method to calculate the response and durability of isotropic metal plate under broadband acoustic loads with four different acoustic field spatial distributions: fully correlated, partially correlated, delta-correlated and diffuse field distribution. For the simple-supported metal plate, mean square stresses and durability obtained by the proposed hybrid method were compared with the exact analytical solution. It is necessary to note, that proposed hybrid method may be applied for the plate with clamped-clamped or clamped-simple supported edges. The mean square stresses, calculated by the hybrid method, fit well the exact analytical solution but are highly sensitive to acoustical field spatial distribution, external acoustic field frequency spectrum and number of eigen modes taken into account.

We calculated durability by using four different approaches providing the mean square stresses as input data. Calculations performed by Wirsching-Light method (for narrowband Gaussian process) and Kowalewski method (for wideband Gaussian process) give, correspondingly, lower and upper estimations of the plate durability. Miles and Rajcher methods (both are for wideband Gaussian process) produce relatively close values located between the results of Wirsching-Light and Kowalewski methods.


spatial correlation function, cross correlation function, isotropic plates, acoustic fatigue, acoustic endurance


  1. Von Glahn, U., Goodykoontz, J., Wagner, J. Nozzle Geometry and Forward Velocity Eeffects on Noise for CTOL Engine-Over-The-Wing Concept // Oct. 1973, NASA TM-X-71453.

  2. Von Glahn U., Groesbeck D., Wagner J. Wing Shielding of High-Velocity Jet and Shock — Associated Noise with Cold and Hot Flow Jets. AIAA Paper 76-547, July 1976.

  3. Miles J.W. On Structural Fatigue Under Random Loading // Journal of the Aeronautical Sciences. 1954. Vol. 21, №. 11. Pp. 753 — 762.

  4. Powell A. On the Fatigue Failure of Structure due to the Vibration Excited by Random Pressure Fields // Journal Acoustic Society of America. 1958. Vol. 30. Pp. 1130 — 1135.

  5. Clarkson B.L. The design of Structures to Resist Jet Noise Fatigue // Journal Royal Aeronautic Society. 1962. Vol. 66, No. 622. Pp. 603 — 616.

  6. Ballentine J.R. et al. Refinement of Sonic Fatigue Structural Design Criteria // Jan. 1968. AFFDL-TR-67-156, Air Force Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio. P.232.

  7. Ballentine J.R. et al. Sonic Fatigue in Combined Environment // May 1966. AFFDL-TR-66-7, Air Force Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio. P.149.

  8. Rudder F.F., Plumblee H.E. Sonic Fatigue Design Guide for Military Aircraft // May 1975. AFFDL-TR-74-112, Air Force Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio. P.572.

  9. Blevins R.D. An Approximate method for Sonic Fatigue Analysis of Plates and Shells // Journal of Sound and Vibration. 1989. 129, № 1. P. 51 — 57.

  10. Eringen A.C. Response of beams and Plates to random Loads // Trans. ASME Journal Applied Mechanics. 1957. № 24. Pp. 46 — 52.

  11. Barnoski R.L., Maurer J.R. Distributed system response characteristics in random pressure field // September 1970, NASA contract report, NASA CR — 1660, P. 220.

  12. Vronskij G.V. Trudy TSAGI, 1976, no. 1796, pp. 28.

  13. Wagner H., Bhat Rama B., Linear Response of an Elastic Plate to Actual Random Load // Ingenieur-Archiv. 1970. Vol. 39. Pp. 149 — 158.

  14. Denisov S.L., Medvedskii A.L. Mekhanika kompozitsionnykh materialov, 2012, vol.18, no. 4, pp. 527 — 543.

  15. Denisov S.L., Medvedskii A.L., Paranin G.V. Uchenye zapiski TsAGI, 2014, vol. XLV, no. 2, pp. 118 — 136.

  16. Kuznecova E.L., Tarlakovsky D.V., Fedotenkov G.V., Medvedskiy A.L. Trudy MAI, 2013, no. 71:

  17. Zareckiy M.V., Sidorenko A.S. Trudy MAI, 2014, no. 75:

  18. Lokteva N. A., Serdyuk D. O., Tarlakovsky D.V. Trudy MAI, 2015, no. 82:

  19. Konovalov V.V., Kachanov E. B., Senik V. Ya., Khvatan A.M. Raschetnie kharacteristiki metallicheskih konstrukcionnih aviacionnih materialov (Calculation characteristics of metallic structural aircraft materials), Мoscow, Triada Print, 2007, 353 p.

  20. Lee Yung-Li, Pan Jwo, Hathaway R. B., Barkley M. E. Fatigue Testing and Analysis (Theory and Practice), ELSEVIER, 2005. Р.402.

  21. Raikher V.L. Trudy TsAGI, 1969, no. 1134, p. 40.

Download — informational site MAI

Copyright © 2000-2024 by MAI