The study of air-fuel mixture formation process in pulse combustion chamber and thermodynamic computation of pulse combustion

Thermal engines, electric propulsion and power plants for flying vehicles


Isaev A. I.1*, Mairovich Y. I.2**, Safarbakov A. M.2***, Khodatskii S. A.2****

1. Irkutsk branch of Moscow State Technical University of Civil Aviation, (MSTUCA), 3, Kommunarov str., Irkutsk, 664047, Russia
2. Moscow State Technical University of Civil Aviation, Irkutsk Branch, 139, Sovetskaya str., Irkutsk, 664047, Russia



Many known projects of pulsejet realize the Humphrey cycle in their operation. Practically all the projects are aimed at argumentation of the pulse combustion chamber design. In the course of the pulsejet development, designers do not pay much attention to fuel-air mixture formation, though this process determines the combustion efficiency, and, as consequence, the amount of hazardous emissions, to which more and more strict requirements are placed. While fuel-air mixture formation, it is necessary to organize a volumetric circulation zone to spread it over the entire volume of the combustion chamber. The existing ways of circulation zones organization do not provide their large volume. When pulse combustion chamber design, it is necessary to control the flow in its air-gas channel to achieve the greatest possible volume of the circulation zone.

We solve the scientific problem to ensure the mixing process in the pulse combustion chamber.

The main purpose of this work is the process of pulse combustion organization of the fuel-air mixture.

Scientific novelty of the work includes:

— argumentation of pulse combustion chamber design;

— technological process developing of fuel-air mixture organization in flowing combustion chamber with pulse fuel supply and its combustion;

— development of methods for calculating parameters of the gaseous atmosphere in pulse fuel-air mixture combustion in the pulse combustor.


flow energizer, pulse combustion chamber, flame tube head, fuel-air mixture, circulation zone


  1. Shchipakov V.A Trudy MAI, 2013, no.67:

  2. Metechko L.B., Tikhonov A.I., Sorokin A.E., Novikov S.V. Trudy MAI, 2016, no.85:

  3. Ustanovki gazoturbinnye. Terminy i opredeleniya GOST R51852 — 2001 (Gas turbine installations. Terms and definitions. GOST R51852 — 2001), Moscow, Standarty, 2001, 15 p.

  4. Isaev A.I., Safarbakov A.M., Bogdanovich D.V., Majrovich Ju.I. Konstruktsiya impul’snoi kamery sgoraniya dlya gazoturbinnogo dvigatelya, Sbornik statei, Sankt Petersburg, 2012, рp. 67-71.

  5. Isaev A.I., Safarbakov A.M., Khodatskii S.A., Mairovich Yu.I. Trudy MAI, 2016, no.88:

  6. Shenk H. Teoriya inzhenernogo eksperimenta (Theory of engineering experiment), Moscow, Mir, 1972, 381 p.

  7. Isaev A.I., Molokova S.V. Termodinamika i teploperedacha (Thermodynamics and Heat Transfer), Irkutsk, IrGTU, 2011, 156 p.

  8. Kobel’kov V.N., Ulas V.D., Fedorov R.M. Termodinamika i teploperedacha, (Thermodynamics and Heat Transfer), Moscow, VVIA im. prof. N.E. Zhukovskogo, 2004, 322 p.

  9. Nechaev Ju.N. Teoriya aviatsionnykh dvigatelei (Theory aircraft engines), Moscow, Voenizdat, 1990, 312 p.

Download — informational site MAI

Copyright © 2000-2024 by MAI