Software for probabilistic-guaranteed estimation of aerial vehicle onboard equipment condition

System analysis, control and data processing


Аuthors

Evdokimenkov V. N.1*, Kim R. V.2**, Popov S. S.3***, Galenkov A. A.4****

1. ,
2. ,
3. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
4. Ministry of the industry and trade, 7, Kitaygorodskiy proezd, Moscow, 109074, Russia

*e-mail: evdokimenkovvn@mai.ru; vnevdokimenkov@gmail.com
**e-mail: romanvkim@yandex.ru
***e-mail: sp@mai.ru
****e-mail: andrewgof@gmail.com

Abstract

The article considers the purpose, functionality and architecture of the aircraft systems condition post-flight monitoring software. The program was developed for calculating the probabilistic estimates of aircraft systems technical condition and decision making on further aircraft safe operation. The program employsflight recorders data as primary information for analysis and relational database to accumulate pre-processed flight data, but it allows processing data stored in .xls and .txt files as well. Methods and algorithms used in the software under consideration are based on conception of the aircraft system reference pattern, which presumes the system representation by the reference set of points in the state space of parameters. The reference patterns are to be formed for each flight phase of the exact aircraft. Using the points appropriate to normal aircraft system operation, the reference patterns can be represented by the cumulative distribution function (CDF) of the Mahalanobis distance from the center of the pattern to each point of the reference set. The program allows select a set of flights and the flight phase to create the etalon set of points and calculate Mahalanobis distance CDF. To make a decision on the current condition of the exact system the probabilistic criterion (quantile) is computed after each flight using Mahalanobis distance CDF. The program package architecture is based on the «Layers» software pattern and includes three layers: presentation layer, business layer and database layer. The considered software may be useful as an additional tool for maintenance specialists during the whole aircraft operation period.

Keywords:

onboard system, state estimation, probability-guaranteed approach, reference pattern

References

  1. Ahmadi A. Aircraft Scheduled Maintenance Programme Development. Decision Support Methodologies and Tools, Universitetstryckeriet, Lulea, 2010, 154 p.

  2. Pattie D. On condition maintenance. Advisory Circular AC43-4, Civil Aviation Authority Of New Zeeland, 25 December 2017, available at: www.caa.govt.nz/Advisory_Circulars/AC043_13.pdf

  3. Ackert S. Basics of Aircraft Maintenance Reserve Development and Management, Aircraft Monitor August 2012, URL: http://www.iata.org/whatwedo/workgroups/documents/paperless%20supply%20chain/basics-ac-mr.pdf

  4. Ratnikova N.A. Metody i sredstva kontrolya aviatsionnoi tekhniki po sostoyaniyu na osnove veroyatnostno-garantiruyushchego podkhoda (Methods and means of aviation equipment control through its state based on a probabilistic-guaranteed approach), Moscow, Izd-vo MAI, 2004, 183 p.

  5. Klein V., Morelli E.A. Aircraft System Identification – Theory and Practice, AIAA, Blacksburg, USA, 2006, 484 p.

  6. Krajcek K., Nikolic D. Dimitrovic A. Aircraft Performance Monitoring From Flight Data, Tehnicki vjestnik, 2015, no, 5, pp.1337 - 1344.

  7. Nikitin A.I. Trudy MAI, 2011, no 45, available at: http://trudymai.ru/eng/published.php?ID=25471

  8. Kumar R., Ghoshhajra M. Configurable flight data analysis for trends and statistics analysis – an embedded perspective of an efficient flight safety system // Proceedings of the International Conference on Aerospace Science and Technology, 26-28 June 2008, Bangalore, India, available at: https://nal-ir.nal.res.in/8544/1/final_paper-NAL-_NALFOQAConfigurable_flight_data_analysis_ver_2.0.p...

  9. Flight Data Monitoring. Second Edition. Civil Aviation Authority, 2013, 191p.

  10. Frantsuz T.A. Statisticheskii analiz trebovanii k prochnosti passazhirskogo samoleta pri ego polete v turbulentnoi atmosfere (Statistical analysis of requirements to a passenger aircraft strength while its flight in turbulent atmosphere), 1985,Trudy TsAGI, no. 2257, pp. 3 - 13

  11. Mashoshin O.F. Nauchnyi vestnik MGTU GA, 2005, no. 85, pp. 39 - 45.

  12. Evdokimenkov V.N., Krasil'shchikov M.N., Ratnikova N.A. Izvestiya RAN. Teoriya i sistemy upravleniya, 2003, no. 6, pp. 38 - 46.

  13. Krasil'shchikov M.N., Evdokimenkov V.N., Kim R.V. Vestnik komp'yuternykh i informatsionnykh tekhnologii, 2012, no. 2, pp. 13 - 19.

  14. Evdokimenkov V.N., Kim R.V. Vekshina A.B., Voronov A.A. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2014, no. 3, pp. 60 - 63.

  15. Evdokimenkov V.N., Kim R.V., Vekshina A.B., Voronov A.A. Trudy MAI, 2014, no. 77, available at: http://trudymai.ru/eng/published.php?ID=53144

  16. Vozdushnyi transport. Sistema menedzhmenta bezopasnosti aviatsionnoi deyatel'nosti. GOST R 55865-2013 (Air transport. Security management system for aviation activities. State Standart R 55865-2013), Moscow, Standarty, 2014, 15 p. available at: http://meganorm.ru/Data2/1/4293772/4293772789.pdf

  17. TSO-C124b. Technical Standard Order. Flight Data Recorder System. Department of Transportation, Federal Aviation Administration, Aircraft Certification Service, Washington, D.C., 2014.

  18. Aircraft Maintenance Manual (AMM) of Airbus A320, Flight Data Recording Parameter Library (FDRPL), Airbus, 2004.

  19. Kim D-O, M'yuller Ch.U., Klekka U.R., Oldenderfer M.S., Bleshftld R.K. Faktornyi, diskriminantnyi i klasternyi analiz (Factor, discriminator and cluster analysis), Moscow, Finansy i statistika, 1989, 216 p.

  20. Larman By G. Applying UML and Patterns: An introduction to Object-Oriented Analysis and Design and Iterative Development, Third Edition, Addison Wesley Professional, 2004, 736 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход